初中数学

某粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较高安全系数A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)

(1)若甲库运往A库粮食吨,请写出将粮食运往A、B两库的总运费(元)与(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

等腰三角形的周长为30cm.

(1)若底边长为xcm,腰长为ycm,写出y与x的函数关系式;
(2)若腰长为xcm,底边长为ycm,写出y与x的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一次函数的图象经过A(3,5)和B(-4,-9).
(1)求这个函数的解析式;
(2)若点(a,2)在该函数的图象上,试求a的值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一次函数,请你画出它的图象,并根据图象求:
(1)方程的解;
(2)不等式的解集;
(3)不等式的解集.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题6分)如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,直线的函数关系式为,且轴交于点,直线经过点,直线交于点

(1)求点的坐标;
(2)求直线的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一次函数的图象经过点(3,5)与(-4,-9).
(1)求这个函数的解析式;
(2)判断点A(1,-1)和点B(2.5,4)是否在这个函数的图象上.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数y=(2m+1)x+m-3
(1)若函数图象经过原点,求m的值;
(2)若函数的图象平行直线y=3x-3,求m的值;
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知一次函数图象经过(3, 5)和(-4,-9)两点,
①求此一次函数的解析式;
②若点(a,2)在该函数的图象上,试求a的值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:
①若每月每户居民用水不超过4m ³,则按每立方米2元计算;②若每月每户居民用水超过4m ³,则超过部分每立方米4.5元计算(不超过部分仍按每立方米2元计算)。现假设该市某户居民某月用水am ³.
(1)当a>4时,则应缴水费多少元?(试用a的代数式表示)
(2)当a=8时,应缴水费多少元?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图一次函数y=kx+b的图象经过点A(-1,3)和点B(2,-3).

(1)描出A(-1,3)和点B(2,-3),画出一次函数y=kx+b的图象
(2)y随x的增大而     (填“增大”或“减小”).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知y是x的一次函数,且当x=-2时,y=-1,当x=2时,y=7.
(1)求y关于x的函数解析式;
(2)当-1≤x≤3时,求y的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知成正比例,当
(1)求出y与x的函数关系式。  
(2)自变量x取何值时,函数值为4?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

建立平面直角坐标系,作出函数y=-2x+3的图象,利用图象解答下列问题:
(1)当x取哪些值时,y>0;
(2)当x取哪些值时,y<0;
(3)当x取哪些值时,-3≤y≤7。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题