我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.
某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg以上(含3000kg)的顾客采用两种销售方案。
甲方案:每千克9元,由基地送货上门;
乙方案:每千克8元,由顾客自己租车运回。
已知该公司租车从基地到公司的运输费用为5000元。
分别写出该公司两种购买方案付款金额y(元)与所购买的水果量x(kg)之间的关系式
⑵当购买量在哪一范围时,选择哪种购买方案付款最少?并说明理由。
小轿车从甲地出发驶往乙地,同时货车从相距乙地60km的入口处驶往甲地(两车均在甲、乙两地之间的公路上匀速行驶),下图是它们离甲地的路程y(km)与货车行驶时间x(h)之间的函数的部分图象.
(1)求货车离甲地的路程y(km)与它的行驶时间x(h)的函数关系式;
(2)哪一辆车先到达目的地?说明理由.
某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠,甲商场的优惠方案是:第一台按原价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.
(1)分别写出两家商场的收费(y)与所买电脑台数(x)之间的关系;
(2)什么情况下到两家商场购买,收费相同?
(3)什么情况下到甲商场购买更优惠?什么情况下到乙商场购买更优惠?
甲、乙两山地自行车选手进行骑行训练.他们在同地出发,反向而行,分别前往A地和B地.甲先出发一分钟且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.下图是两人之间的距离y(千米)随乙出发时间x(分钟)之间的变化图象.请根据图象解决下列问题:
(1)甲的速度为 千米/小时,乙的速度为 千米/小时;
(2)在图中的括号内填上正确的数值;
(3)乙出发多长时间两人首次相距22.6千米?
如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象的一个交点为.
(1)求反比例函数的解析式;
(2)设一次函数的图象与轴交于点,若是轴上一点,且满足的面积是3,直接写出点的坐标.
2012年秋冬北方干旱,光明社区出现饮用水紧张,每天需从社区外调运饮用水120吨.现从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到光明社区供水点的路程和运费如下表:
|
到光明社区供水点的路程(千米) |
运费(元/吨千米) |
甲厂 |
20 |
12 |
乙厂 |
14 |
15 |
(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?
(2)设某天从甲厂调运饮用水吨,总运费为元,试写出关于的函数关系式,并求出这天运费最少为多少元?
黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)
(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.
(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.
(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?
已知一次函数y=kx+b的图象经过点(-1,-4),且与正比例函数y=x+1的图象相交于点(2,a),求
(1)a的值
(2)k,b的值
(3)这两个函数图象与x轴所围成的三角形面积.
近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).
(1)求AB的长;
(2)当∠BAD=45°时,求D点的坐标;
(3)当点C在线段AB上时,求直线BD的关系式.
4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心。某市积极筹集救灾物质 260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资。已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
车 型 运往地 |
甲 地(元/辆) |
乙 地(元/辆) |
大货车 |
720 |
800 |
小货车 |
500 |
650 |
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为辆,前往甲、乙两地的总运费为w元,求出w与的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费
如图,已知A(-4,n),B(1,-4)是一次函数的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线与轴的交点的坐标及△的面积;
(3)求不等式的解集(请直接写出答案).