如图,直线与x轴相交于点A,与y轴相交于点B.
⑴求A、B两点的坐标;
⑵过B点作直线BP与x轴相交于P,且使AP=2OA, 求ΔBOP的面积.
已知一次函数y=(12m)x+m+1,求当m为何值时.
(1)y随x的增大而增大?
(2)图象经过第一、二、四象限?
(3)图象经过第二、四象限?
(4)图象与y轴的交点在x轴的下方?
如图,的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).
(1)求这两个函数的表达式;
(2)请直接写出当x取何值时,y1>y2.
某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套)。
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.
(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?
如图表示一个正比例函数与一个一次函数的图像,它们交于点A(4,3).一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.
已知y1与x成正比例,y2与x+2成正比例,且y=y1+y2,当x=2时,y=4;当x=-1时,y=7,求y与x之间的函数关系式.
已知y+3与x+2成正比例,且当x=3时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=-1时,求y的值;
(3)当y=0时,求x的值.
小亮家距离学校8千米,昨天早晨,小亮骑车上学途中,自行车“爆胎”,恰好路边有“自行车”维修部,几分钟后车修好了,为了不迟到,他加快了骑车到校的速度.回校后,小亮根据这段经历画出如下图象.该图象描绘了小亮行的路程S与他所用的时间t之间的关系.请根据图象,解答下列问题:
(1)小亮行了多少千米时,自行车“爆胎”?修车用了几分钟?
(2)小亮到校路上共用了多少时间?
(3)如果自行车没有“爆胎”,一直用修车前的速度行驶,那么他比实际情况早到或晚到学校多少分钟(精确到0.1)?
如图,一次函数y=kx+b的图象与反比例函数的图象交于A(-2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.