画出函数的图象,利用图象:(1)求方程的解;(2)求不等式的解;(3)若,求的取值范围。
(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论“DE=BD+CE”是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m、8 m.现要将其扩建成等腰三角形,且扩充部分是以8 m为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.
(1)学完全等三角形以后,老师布置了这样一道题:如图1,点M、N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q.试说明:∠BQM=60°.(2)小丽做完后,进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:① ;② .并对②给出证明.
如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设中其它条件不变.求证:△AEF≌△BCF.
如图,A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1 km,BD=3 km,CD=3 km现在河边CD上建一水厂向A、B两村输送自来水,铺设水管的费用为20 000元/千米.(1)请你在河CD边上作出水厂位置O,使铺设水管的费用最省;(2)求出铺设水管的总费用.