如图,A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1 km,BD=3 km,CD=3 km现在河边CD上建一水厂向A、B两村输送自来水,铺设水管的费用为20 000元/千米.(1)请你在河CD边上作出水厂位置O,使铺设水管的费用最省;(2)求出铺设水管的总费用.
网格中每个小正方形的边长都是1. (1)将图①中的格点三角形ABC平移,使点A平移至点A`,画出平移后的三角形; (2)在图②中画一个格点三角形DEF,使△DEF∽△ABC,且相似比为2∶1; (3)在图③中画一个格点三角形PQR,使△PQR∽△ABC,且相似比为∶1.
如图,圆心角∠AOB=120°,弦AB=2cm. (1)求⊙O的半径r; (2)求劣弧的长(结果保留).
(1)已知:sinα·cos60º=,求锐角α; (2)计算:.
如图,在直角梯形ABCD中,AD∥CB, ,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒). (1)设△BPQ的面积为S,求S与t之间的函数关系式; (2)当t为何值时,四边形ABQP是平行四边形. (3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点. (1)求点的坐标; (2)求直线的解析表达式; (3)求的面积。