某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)
(1)求收工时距A地多远?(2)在第 次纪录时距A地最远.(3)若每km耗油0.3升,问共耗油多少升?
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,4),且过点B(-3,0) (1)写出抛物线C1与x轴的另一个交点M的坐标;(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;(3)写出阴影部分的面积S.
已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为的中点.(1)求证:AC是半圆O的切线;(2)若AD=6,AE=6,求BC的长.
如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
如图,小明为了测量一铁塔的高度CD,他先在A处测得塔顶C的仰角为30°,再向塔的方向直行40米到达B处,又测得塔顶C的仰角为60°,请你帮助小明计算出这座铁塔的高度.(小明的身高忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24)