(1)学完全等三角形以后,老师布置了这样一道题:如图1,点M、N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q.试说明:∠BQM=60°.(2)小丽做完后,进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?请你作出判断,在下列横线上填写“是”或“否”:① ;② .并对②给出证明.
已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值 (2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.
如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD相交于O,且AC⊥BD,若AD+BC=4cm,求:(1)对角线AC的长;(2)梯形ABCD的面积.
为了了解某校八年级学生身体发育情况,抽取了40名学生进行测试身高,结果如下:1.55米5人,1.60米16人,1.75米10人,1.80米8人,1.90米1人。(1)请你计算这40名学生身高的众数、中位数及平均数(平均数计算结果精确到0.01米)(2)身高1.75米的同学的身高在这40名同学中处在什么位置?(3)以此推测八年级同学的身高平均是多少?
某蔬菜公司收购到某种蔬菜104 吨,准备加工后上市销售. 该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨. 现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?
如图,矩形ABCD的对角线相交于点O,DE//AC,CE//DB,CE、DE交于点E,请问:四边形DOCE是什么四边形?请说明理由。