已知直线,求:(1)直线与轴,轴的交点坐标;(2)若点(a,1)在图象上,则a值是多少?
如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.(1)求该抛物线的解析式;(2)求证:△OAB是等腰直角三角形;(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.
如图,已知AD既是△ABC的中线,又是角平分线,请判断:(1)△ABC的形状;(2)AD是否过△ABC外接圆的圆心O,⊙O是否是△ABC的外接圆,并证明你的结论.
汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱”赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数,中位数分别是多少?
先化简分式,再从不等式组的解集中取一个非负整数值代入,求原分式的值.
综合与探究:如图,抛物线y=x2-x-4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.