小亮家距离学校8千米,昨天早晨,小亮骑车上学途中,自行车“爆胎”,恰好路边有“自行车”维修部,几分钟后车修好了,为了不迟到,他加快了骑车到校的速度.回校后,小亮根据这段经历画出如下图象.该图象描绘了小亮行的路程S与他所用的时间t之间的关系.请根据图象,解答下列问题:(1)小亮行了多少千米时,自行车“爆胎”?修车用了几分钟?(2)小亮到校路上共用了多少时间?(3)如果自行车没有“爆胎”,一直用修车前的速度行驶,那么他比实际情况早到或晚到学校多少分钟(精确到0.1)?
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x(m). (1)若花园的面积为187m2,求x的值; (2)若在P处有一棵树与墙CD,AD的距离分别是16m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: (1)用树状图(或表格)表示出所有可能的寻宝情况; (2)求在寻宝游戏中胜出的概率.
已知二次函数y=a+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函数y=x+m的图象交于(0,-1). (1)求两个函数解析式;(2)求两个函数图象的另一个交点.
已知二次函数y=-+4 (1)写出其图象的开口方向,对称轴和顶点坐标; (2)x取何值时,①y=0,②y﹥0,③y﹤0.
如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,Q从点B开始沿BC边向C点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,几秒钟后,△PBQ的面积等于8cm2?