鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度.如图所示,一架水平飞行的无人机在处测得正前方河流的左岸处的俯角为,无人机沿水平线方向继续飞行50米至处,测得正前方河流右岸处的俯角为.线段的长为无人机距地面的铅直高度,点、、在同一条直线上.其中,米.
(1)求无人机的飞行高度;(结果保留根号)
(2)求河流的宽度.(结果精确到1米,参考数据:,
某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门 的顶部 处距地面高为 ,为了解自己的有效测温区间.身高 的小聪做了如下实验:当他在地面 处时测温门开始显示额头温度,此时在额头 处测得 的仰角为 ;在地面 处时,测温门停止显示额头温度,此时在额头 处测得 的仰角为 .求小聪在地面的有效测温区间 的长度.(额头到地面的距离以身高计,计算精确到 , , ,
脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,为了测量房屋的高度,在地面上点测得屋顶的仰角为,此时地面上点、屋檐上点、屋顶上点三点恰好共线,继续向房屋方向走到达点时,又测得屋檐点的仰角为,房屋的顶层横梁,,交于点(点,,在同一水平线上).(参考数据:,,,
(1)求屋顶到横梁的距离;
(2)求房屋的高(结果精确到.
如图,,为两个建筑物,两建筑物底部之间的水平地面上有一点,从建筑物的顶点测得点的俯角为,从建筑物的顶点测得点的俯角为,测得建筑物的顶点的俯角为.若已知建筑物的高度为20米,求两建筑物顶点、之间的距离(结果精确到,参考数据:,.
如图,在处利用测角仪测得某建筑物的顶端点的仰角为,点的仰角为,点到建筑物的距离为米,则 米.
襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱和塔冠进行了测量.如图所示,最外端的拉索的底端到塔柱底端的距离为,拉索与桥面的夹角为,从点出发沿方向前进,在处测得塔冠顶端的仰角为.请你求出塔冠的高度(结果精确到.参考数据,,,.
如图,为测量旗杆的高度,在教学楼一楼点处测得旗杆顶部的仰角为,在四楼点处测得旗杆顶部的仰角为,点与点在同一水平线上.已知,则旗杆的高度为 .
如图,两座建筑物的水平距离为,从点测得点的俯角为,测得点的俯角为.求这两座建筑物,的高度.(结果保留小数点后一位,,.
如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶点处看甲楼楼底点处的俯角为,走到乙楼点处看甲楼楼顶点处的俯角为,已知,.求乙楼的高度的长.(参考数据:,,精确到.
小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点 处测得汽车前端 的俯角为 ,且 ,若直线 与地面 相交于点 ,点 到地面 的垂线段 的长度为1.6米,假设眼睛 处的水平线 与地面 平行.
(1)求 的长度;
(2)假如障碍物上的点 正好位于线段 的中点位置(障碍物的横截面为长方形,且线段 为此长方形前端的边), ,若小强的爸爸将汽车沿直线 后退0.6米,通过汽车的前端 点恰好看见障碍物的顶部 点(点 为点 的对应点,点 为点 的对应点),求障碍物的高度.
慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高为1.7米,他站在处测得塔顶的仰角为,小琴的目高为1.5米,她站在距离塔底中心点米远的处,测得塔顶的仰角为.(点、、在同一水平线上,参考数据:,,
(1)求小亮与塔底中心的距离;(用含的式子表示)
(2)若小亮与小琴相距52米,求慈氏塔的高度.
为了测量某山(如图所示)的高度,甲在山顶A测得C处的俯角为45°,D处的俯角为30°,乙在山下测得C,D之间的距离为400米.已知B,C,D在同一水平面的同一直线上,求山高AB.(可能用到的数据:1.414,1.732)
南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点 测得大桥主架与水面的交汇点 的俯角为 ,大桥主架的顶端 的仰角为 ,已知测量点与大桥主架的水平距离 ,则此时大桥主架顶端离水面的高 为
A. |
|
B. |
|
C. |
|
D. |
|
我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,