如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:2≈1.414,3≈1.732).
已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)求出该反比例函数解析式;(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.
如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E. (l)当点C与点O重合时,DE= ; (2)当CE∥OB时,证明此时四边形BDCE为菱形; (3)在点C的运动过程中,直接写出OD的取值范围.
如图,已知反比例函数y1=和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=ax+1的图象与x轴相交于点C,求∠ACO的度数;(3)结合图象直接写出:当y1>y2>0时,x的取值范围.
中学生骑电动车上学给交通带来隐患.某中学在该校1800个学生家长中,随机调查了部分家长对“中学生骑电动车上学”的态度(态度分为:A.反对,B.无所谓,C.赞成),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 个学生家长; (2)将图1,图2补充完整; (3)根据调查结果,请你估计该校这1800个学生家长中,持反对态度的有 人.
先化简,再求值:,其中a=+1,b=﹣1.