襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41).
如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点. (1)求B、C两点坐标; (2)求此抛物线的函数解析式; (3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.
如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD (1)求证:∠ACH=∠CBD; (2)求证:P是线段AQ的中点; (3)若⊙O 的半径为5,BH=8,求CE的长.
当a>0且x>0时,因为≥0,所以≥0,从而(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为. (1)已知函数y1=x(x>0)与函数,则当x= 1 时,y1+y2取得最小值为2 . (2)已知函数y1=x+1(x>﹣1)与函数,求的最小值,并指出取得该最小值时相应的x的值.
已知二次函数的图象经过点(0,3),顶点坐标为(1,4), (1)求这个二次函数的解析式; (2)求图象与x轴交点A、B两点的坐标; (3)图象与y轴交点为点C,求三角形ABC的面积.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD.