某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门 AD 的顶部 A 处距地面高为 2 . 2 m ,为了解自己的有效测温区间.身高 1 . 6 m 的小聪做了如下实验:当他在地面 N 处时测温门开始显示额头温度,此时在额头 B 处测得 A 的仰角为 18 ° ;在地面 M 处时,测温门停止显示额头温度,此时在额头 C 处测得 A 的仰角为 60 ° .求小聪在地面的有效测温区间 MN 的长度.(额头到地面的距离以身高计,计算精确到 0 . 1 m , sin 18 ° ≈ 0 . 31 , cos 18 ° ≈ 0 . 95 , tan 18 ° ≈ 0 . 32 )
用配方法解关于x的一元二次方程ax2+bx+c=0.
先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.
解不等式组:并写出它的所有的整数解.
如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.
在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.