某体育看台侧面的示意图如图所示,观众区 的坡度 为 ,顶端 离水平地面 的高度为 ,从顶棚的 处看 处的仰角 ,竖直的立杆上 、 两点间的距离为 , 处到观众区底端 处的水平距离 为 .求:
(1)观众区的水平宽度 ;
(2)顶棚的 处离地面的高度 . , ,结果精确到
某兴趣小组为了测量大楼 的高度,先沿着斜坡 走了52米到达坡顶点 处,然后在点 处测得大楼顶点 的仰角为 ,已知斜坡 的坡度为 ,点 到大楼的距离 为72米,求大楼的高度 .
(参考数据: , ,
如图,在建筑物 左侧距楼底 点水平距离150米的 处有一山坡,斜坡 的坡度(或坡比)为 ,坡顶 到 的垂直距离 米(点 , , , , 在同一平面内),在点 处测得建筑物顶 点的仰角为 ,则建筑物 的高度约为
(参考数据: ; ;
A. |
69.2米 |
B. |
73.1米 |
C. |
80.0米 |
D. |
85.7米 |
如图,长 的楼梯 的倾斜角 为 ,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角 为 ,则调整后的楼梯 的长为
A. B. C. D.
如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长 的竹竿 斜靠在石坝旁,量出杆长 处的 点离地面的高度 ,又量得杆底与坝脚的距离 ,则石坝的坡度为
A. B.3C. D.4
如图1,水坝的横截面是梯形 , ,坝顶 ,背水坡 的坡度 (即 为 ,坝底 .
(1)求坝高;
(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得 , ,求 的长.(参考数据: , ,
如图,这是一座一侧有缓步台的过街天桥示意图.已知桥面 长为 ,与水平面的垂直距离为 ,桥面 长为 ,与水平面的垂直距离为 .斜坡 , 与水平面的夹角分别为 , ,斜坡 的坡度(即 为 .求天桥跨度 的长.
参考数据: , ,
如图,垂直于水平面的 信号塔 AB建在垂直于水平面的悬崖边 B点处,某测量员从山脚 C点出发沿水平方向前行78米到 D点(点 A, B, C在同一直线上),再沿斜坡 方向前行78米到 E点(点 A, B, C, D, E在同一平面内),在点 E处测得 信号塔顶端 A的仰角为43°,悬崖 BC的高为144.5米,斜坡 DE的坡度(或坡比) ,则信号塔 AB的高度约为( )
(参考数据: , , )
A. |
23米 |
B. |
24米 |
C. |
24.5米 |
D. |
25米 |
如图,雨后初晴,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角 、测量点 到水面平台的垂直高度 、看到倒影顶端的视线与水面交点 到 的水半距离 .再测得梯步斜坡的坡角 和长度 ,根据以下数据进行计算,
如图, 米, 米, 米, , .已知线段 和线段 关于直线 对称.(以下结果保留根号)
(1)求梯步的高度 ;
(2)求树高 .
如图,小刚从山脚 出发,沿坡角为 的山坡向上走了300米到达 点,则小刚上升了
A. 米B. 米C. 米D. 米
资阳市为实现 网络全覆盖, 年拟建设 基站七千个.如图,在坡度为 的斜坡 上有一建成的基站塔 ,小芮在坡脚 测得塔顶 的仰角为 ,然后她沿坡面 行走13米到达 处,在 处测得塔顶 的仰角为 .(点 、 、 、 均在同一平面内)(参考数据: , ,
(1)求 处的竖直高度;
(2)求基站塔 的高.
如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地. , ,斜坡 长 ,斜坡 的坡比为 .为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过 时,可确保山体不滑坡.如果改造时保持坡脚 不动,则坡顶 沿 至少向右移 时,才能确保山体不滑坡.(取
如图,某商店营业大厅自动扶梯 的倾斜角为 , 的长为12米,则大厅两层之间的高度为 米.(结果保留两个有效数字)【参考数据; sin 31 ° = 0 . 515 , cos 31 ° = 0 . 857 , tan 31 ° = 0 . 601 】