用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:
探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.
(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;
(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.
探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.
如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1.景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度是指坡面的铅直高度与水平宽度的比.)
(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;
(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC;
(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD的面积S四边形ABCD .
如图,在射线 , , , 围成的菱形 中, , , 是射线 上一点, 与 , 都相切,与 的延长线交于点 .过 作 交线段 (或射线 于点 ,交线段 (或射线 于点 .以 为边作矩形 ,点 , 分别在围成菱形的另外两条射线上.
(1)求证: .
(2)设 ,当矩形 的面积为 时,求 的半径.
(3)当 或 与 相切时,求出所有满足条件的 的长.
如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.
(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.
2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为300和600,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据≈1.41,≈1.73)
如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=450,若原坡长AB=20m,求改造后的坡长AE(结果保留根号)
如图,在平面直角坐标系中, 为坐标原点,点 的坐标为 ,菱形 的顶点 , 都在第一象限, ,将菱形绕点 按顺时针方向旋转角 得到菱形 (点 的对应点为点 , 与 交于点 ,连接 .
(1)求点 的坐标.
(2)当 时,求 的长.
(3)求证: 平分 .
(4)连接 并延长交 轴于点 ,当点 的坐标为 时,求点 的坐标.
如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断线段AB与AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)
如图,在四边形 中, , , ,点 、 分别在线段 、 上,且 , , .
(1)求证: ;
(2)求证:以 为直径的圆与 相切;
(3)若 , ,求 的面积.
如图,在平面直角坐标系中,二次函数的图象与一次函数的图象交于A、B两点,点A在x轴上,点B的纵坐标为.点P是二次函数图象上A、B两点之间的一个动点(不与点A、B重合),设点P的横坐标为m,过点P作x轴的垂线交AB于点C,作PD⊥AB于点D.
(1)求b及sin∠ACP的值;
(2)用含m的代数式表示线段PD的长;
(3)连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为.如果存在,直接写出m的值;如果不存在,请说明理由.