海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)
施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示). (1)求出这条抛物线的函数解析式,并写出自变量x的取值范围; (2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明; (3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上。B、C点在地面OM线上(如图2所示).为了筹备材料,需测算“脚手架”三根钢杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.
如图,在Rt△ABC中,∠ACB=90°,AC=9cm,BC=12cm,P为BC的中点.动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s. (1)求点P到直线AB的距离; (2)当t=1.8时,判断直线AB与⊙P的位置关系,并说明理由; (3)已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
下图是数值转换机的示意图,按照其对应关系画出了y与x的函数图象(右图): (1)分别写出当与x>4时,y与x的函数关系式; (2)求所输出的y值中最小一个数值; (3)写出当x满足什么范围时,输出的y的值满足.
如图,△ABC中,∠B=90°,AB=6,BC=8,点P从点A开始沿边AB向点B以的速度移动,与此同时,点Q从点B开始沿边BC向点C以的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动,问: (1)经过几秒,的面积等于? (2)的面积会等于△ABC的面积的一半吗?若会,请求出此时的运动时间;若不会,请说明理由.
已知二次函数y= -x2-2x+3 (1)该抛物线的对称轴是,顶点坐标; (2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;
(3)根据图象,写出当y > 0时,x的取值范围; (4)将此图象沿x轴向右平移几个单位,可使平移后所得图象经过坐标原点?请写出平移后图象与x轴的另一个交点的坐标.