初中数学

如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.

(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式及自变量x的取值范围;当x为何值时,y有最大值?并求出y的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分 第(1)小题4分,第(2)小题4分,第(3)小题6分)
已知:如图,在△ABC中,AB=AC=15, cos∠A=.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.

(1)求底边BC的长;
(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;
(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,∠CBA=32°,求∠EFD的度数。    

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,如图①,∠MON=60°,点A、B为射线OM、ON上的动点(点A、B不与点O重合),且AB=,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.
 
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,二次函数 y 1 = a ( x - m ) 2 + n y 2 = 6 a x 2 + n ( a < 0 m > 0 n > 0 ) 的图象分别为 C 1 C 2 C 1 y 轴于点 P ,点 A C 1 上,且位于 y 轴右侧,直线 PA C 2 y 轴左侧的交点为 B

(1)若 P 点的坐标为 ( 0 , 2 ) C 1 的顶点坐标为 ( 2 , 4 ) ,求 a 的值;

(2)设直线 PA y 轴所夹的角为 α

①当 α = 45 ° ,且 A C 1 的顶点时,求 am 的值;

②若 α = 90 ° ,试说明:当 a m n 各自取不同的值时, PA PB 的值不变;

(3)若 PA = 2 PB ,试判断点 A 是否为 C 1 的顶点?请说明理由.

来源:2020年江苏省泰州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=450,若原坡长AB=20m,求改造后的坡长AE(结果保留根号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = - x 2 + kx - 2 k 的顶点为 N

(1)若此抛物线过点 A ( - 3 , 1 ) ,求抛物线的解析式;

(2)在(1)的条件下,若抛物线与 y 轴交于点 B ,连接 AB C 为抛物线上一点,且位于线段 AB 的上方,过 C CD 垂直 x 轴于点 D CD AB 于点 E ,若 CE = ED ,求点 C 坐标;

(3)已知点 M ( 2 - 4 3 3 0 ) ,且无论 k 取何值,抛物线都经过定点 H ,当 MHN = 60 ° 时,求抛物线的解析式.

来源:2020年湖北省黄石市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = - 1 2 x + 2 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = - 2 3 x 2 + bx + c 过点 B 且与直线相交于另一点 C ( 5 2 3 4 )

(1)求抛物线的解析式;

(2)点 P 是抛物线上的一动点,当 PAO = BAO 时,求点 P 的坐标;

(3)点 N ( n 0 ) ( 0 < n < 5 2 ) x 轴的正半轴上,点 M ( 0 , m ) y 轴正半轴上的一动点,且满足 MNC = 90 °

①求 m n 之间的函数关系式;

②当 m 在什么范围时,符合条件的 N 点的个数有2个?

来源:2020年湖北省咸宁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, O 是坐标原点,抛物线 y = 1 2 x 2 + bx + c 经过点 B ( 6 , 0 ) 和点 C ( 0 , - 3 )

(1)求抛物线的表达式;

(2)如图2,线段 OC 绕原点 O 逆时针旋转 30 ° 得到线段 OD .过点 B 作射线 BD ,点 M 是射线 BD 上一点(不与点 B 重合),点 M 关于 x 轴的对称点为点 N ,连接 NM NB

①直接写出 ΔMBN 的形状为    

②设 ΔMBN 的面积为 S 1 ΔODB 的面积为是 S 2 .当 S 1 = 2 3 S 2 时,求点 M 的坐标;

(3)如图3,在(2)的结论下,过点 B BE BN ,交 NM 的延长线于点 E ,线段 BE 绕点 B 逆时针旋转,旋转角为 α ( 0 ° < α < 120 ° ) 得到线段 BF ,过点 F FK / / x 轴,交射线 BE 于点 K KBF 的角平分线和 KFB 的角平分线相交于点 G ,当 BG = 2 3 时,请直接写出点 G 的坐标为   

来源:2020年辽宁省沈阳市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,我边防哨所A测得一走私船在A的西北方向B处由南向北正以每小时10海里的速度逃
跑,我缉私艇迅速朝A的西偏北600的方向出水拦截,2小时后终于在B地正北方向M处拦截住,试求缉私
船的速度.(参考数据:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

丽水市在规划新城期间,欲拆除瓯江岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2(即tan∠CDF=2),岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.
(1)如图1,当DH=DA时,
①填空:∠HGA=       度;
②若EF∥HG,求∠AHE的度数,并求此时a的最小值;
(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.

(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;
(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD时,求sin∠CAB的值;
②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图一,在射线的一侧以为一条边作矩形,点是线段上一动点(不与点重合),连结,过点的垂线交射线于点,连接

(1)求的大小;

(2)问题探究:动点在运动的过程中,

①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.

的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.

(3)问题解决:

如图二,当动点运动到的中点时,的交点为的中点为,求线段的长度.

来源:2019年湖南省湘潭市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题