如图,在平面直角坐标系中,直线 y = - 1 2 x + 2 与 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = - 2 3 x 2 + bx + c 过点 B 且与直线相交于另一点 C ( 5 2 , 3 4 ) .
(1)求抛物线的解析式;
(2)点 P 是抛物线上的一动点,当 ∠ PAO = ∠ BAO 时,求点 P 的坐标;
(3)点 N ( n , 0 ) ( 0 < n < 5 2 ) 在 x 轴的正半轴上,点 M ( 0 , m ) 是 y 轴正半轴上的一动点,且满足 ∠ MNC = 90 ° .
①求 m 与 n 之间的函数关系式;
②当 m 在什么范围时,符合条件的 N 点的个数有2个?
已知抛物线y=x2+bx+c经过(0,﹣1),(3,2)两点.求它的解析式及顶点坐标.
如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE.求证:.
在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.
甲、乙两人进行射击训练,在相同条件下各射靶5次,成绩统计如下:
(1)甲、乙两人射击成绩的极差、方差分别是多少? (2)谁的射击成绩更稳定?
定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3. (1)请你直接写出“蛋圆”抛物线部分的解析式y ,自变量的取值范围是 ; (2)请你求出过点C的“蛋圆”切线与x轴的交点坐标; (3)求经过点D的“蛋圆”切线的解析式.