因式分解:a2x2﹣4+a2y2﹣2a2xy
计算 .画出函数y=-x2+1的图象已知:如图,E,F分别是□ABCD的边AD,BC的中点.求证:AF=CE.
如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,RtA可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段的长为_________________.
如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,0)两点,与y轴交于点D(0,3)求这个抛物线的解析式如图②,过点A的直线与抛物线交于点E,交轴于点F,其中点E的横坐标为-2,若直线为抛物线的对称轴,点G为直线上的一动点,则轴上是否存在一点H,使四点所围成的四边形周长最小,若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.图① 图②图③
探究 (1)在图①中,已知线段AB、CD,点E、F分别为线段AB、CD的中点.①若A(-2,0),B(4,0),则E点的坐标为 ;②若C(-3,3),D(-3,-1),则F点的坐标为 ;图① 图②在图②中,已知线段AB的端点坐标为A求出图中AB的中点D的坐标(用含的代数式表示),并给出求解过程.归纳无论线段AB处于指定坐标系中的哪个位置,当其端点坐标为AAB中点为时, , .(不必证明)运用已知如图③,一次函数与反比例函数的图象交点为A,B. ①求出交点A,B的坐标;②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标]
2011年3月10日,我国云南盈江县发生了5.8级的地震,在地震中某学校的课桌损坏严重,为了尽快的复课,该校有560张课桌急需维修,A工程队先维修一天,又请B工程队前来帮助,且B队平均每天比A队多修24张课桌,按照这样的工作效率进行,A、B两队需合作6天才能维修完剩下的课桌.求工程队A平均每天维修课桌的张数A、B两队按计划合作施工2天,由于余震,学校又清理出需要维修的课桌198张,为了按时完成任务,学校又请来C工程队,A、C队的工作效率相同,且三个工程队决定从第3天开始,各自都提高工作效率,B队提高的工作效率是A、C队提高的2倍,这样他们至少还需要3天才能完成整个维修任务.求工程队A提高工作效率后平均每天多维修课桌的张数的取值范围.