如图,已知线段 , 于点 ,且 , 是射线 上一动点, , 分别是 , 的中点,过点 , , 的圆与 的另一交点 (点 在线段 上),连接 , .
(1)当 时,求 和 的度数;
(2)求证: .
(3)在点 的运动过程中
①当 时,取四边形 一边的两端点和线段 上一点 ,若以这三点为顶点的三角形是直角三角形,且 为锐角顶点,求所有满足条件的 的值;
②记 与圆的另一个交点为 ,将点 绕点 旋转 得到点 ,当点 恰好落在 上时,连接 , , , ,直接写出 和 的面积之比.
如图,在 中, , , (圆心 在 内部)经过 、 两点,交 于点 ,过点 作 的切线交 于点 .延长 交 于点 ,作 交 于点
(1)求证:四边形 是平行四边形;
(2)若 , ,求 的值.
如图,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,连接 ,点 在抛物线上,直线 与 轴交于点 .
(1)求 的值及直线 的函数表达式;
(2)点 在 轴正半轴上,点 在 轴正半轴上,连接 与直线 交于点 ,连接 并延长交 于点 ,若 为 的中点.
①求证: ;
②设点 的横坐标为 ,求 的长(用含 的代数式表示).
在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:
如图,将矩形 的四边 、 、 、 分别延长至 、 、 、 ,使得 , ,连接 , , , .
(1)求证:四边形 为平行四边形;
(2)若矩形 是边长为1的正方形,且 , ,求 的长.
如图, 为 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知 , .
(1)求 的长;
(2)求图中阴影部分的面积.
如图,在正方形 中,点 在对角线 上(不与点 , 重合), 于点 , 于点 ,连接 .
(1)写出线段 , , 长度之间的数量关系,并说明理由;
(2)若正方形 的边长为1, ,求线段 的长.
如图,在射线 , , , 围成的菱形 中, , , 是射线 上一点, 与 , 都相切,与 的延长线交于点 .过 作 交线段 (或射线 于点 ,交线段 (或射线 于点 .以 为边作矩形 ,点 , 分别在围成菱形的另外两条射线上.
(1)求证: .
(2)设 ,当矩形 的面积为 时,求 的半径.
(3)当 或 与 相切时,求出所有满足条件的 的长.
如图,在 中, , 是 边上一点,以 为直径的 经过 的中点 ,交 的延长线于点 ,连接 .
(1)求证: .
(2)若 , ,求 的长.
如图,在平面直角坐标系中, 为坐标原点,点 的坐标为 ,菱形 的顶点 , 都在第一象限, ,将菱形绕点 按顺时针方向旋转角 得到菱形 (点 的对应点为点 , 与 交于点 ,连接 .
(1)求点 的坐标.
(2)当 时,求 的长.
(3)求证: 平分 .
(4)连接 并延长交 轴于点 ,当点 的坐标为 时,求点 的坐标.
数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含 的三角板的斜边与含 的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点 , , 在同一直线上,若 ,求 的长.
请你运用所学的数学知识解决这个问题.
数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含 的三角板的斜边与含 的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点 , , 在同一直线上,若 ,求 的长.
请你运用所学的数学知识解决这个问题.
在平面直角坐标系中,点 为原点,点 的坐标为 .如图1,正方形 的顶点 在 轴的负半轴上,点 在第二象限.现将正方形 绕点 顺时针旋转角 得到正方形 .
(1)如图2,若 , ,求直线 的函数表达式.
(2)若 为锐角, ,当 取得最小值时,求正方形 的面积.
(3)当正方形 的顶点 落在 轴上时,直线 与直线 相交于点 , 的其中两边之比能否为 ?若能,求点 的坐标;若不能,试说明理由
已知:如图,在 中, ,点 是底边 上一点且满足 , 是 的外接圆,过点 作 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.