如图,在 ΔABC 中, BC = 12 , tan A = 3 4 , ∠ B = 30 ° ;求 AC 和 AB 的长.
(1)计算: | 1 - 3 | + 3 tan 30 ∘ - ( 3 - 5 ) 0 - - 1 3 - 1 .
(2)解不等式组 2 x + 1 > 0 ① 2 - x 2 ≥ x + 3 3 ② .
如图1所示,已知:点A(﹣2,﹣1)在双曲线 C: y = a x 上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.
(1)求双曲线C及直线l2的解析式;
(2)求证: P F 2 ﹣ P F 1 = MN = 4 ;
(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为 AB = x 1 - x 2 2 + y 1 - y 2 2 .
在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.
科技馆是少年儿童节假日游玩的乐园.
如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为 y = a x 2 , 0 ≤ x ≤ 30 b ( x + n , 30 ≤ x ≤ 90 ,10:00之后来的游客较少可忽略不计.
(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?
如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角 ∠ BAF = 30 ° , ∠ CBE = 45 ° .
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 2 ≈ 1 . 414 ,CF结果精确到米)