如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全,现要做一个不锈钢扶手 AB 及两根与 FG 垂直且长为1米的不锈钢架杆 AD 和 BC (杆子的底端分别为 D 、 C ) ,且 ∠ DAB = 66 . 5 ° .(参考数据: cos 66 . 5 ° ≈ 0 . 40 , sin 66 . 5 ° ≈ 0 . 92 )
(1)求点 D 与点 C 的高度差 DH ;
(2)求所有不锈钢材料的总长度(即 AD + AB + BC 的长,结果精确到0.1米)
如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.
如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1 ________ C1 ________.
如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.(1)求证:CE=BD;(2)如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.
如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2-GE2=EA2.
师在一次“探究性学习”课中,给出如下数表:(1)请你分别认真观察线段a、b、c的长与n之间的关系,用含n(n为自然数,且n>1)的代数式表示:a= ,b= ,c= .(2)猜想:以线段a、b、c为边的三角形是否是直角三角形?并说明你的理由.