如图,一次函数 y 1 = kx + b ( k ≠ 0 ) 和反比例函数 y 2 = m x ( m ≠ 0 ) 的图象交于点 A ( − 1 , 6 ) , B ( a , − 2 ) .
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出 y 1 > y 2 时, x 的取值范围.
已知:如图,AB是⊙O的直径,CD是⊙O的弦, 且AB⊥CD,垂足为E,联结OC, OC=5.(1)若CD=8,求BE的长;(2)若∠AOC=150°, 求扇形OAC的面积.
已知二次函数.(1)将化成y ="a" (x - h) 2 + k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?
已知:如图,在中,D是AC上一点,联结BD,且∠ABD =∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB= 7,求AC的长.
计算:
△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F .(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.