某中学综合实践小组同学,想测量金龙山观音大佛的高度,他们在山脚下的D处测得山顶B的仰角为30°,沿着山脚向前走了4米达到E处,测得观音大佛的头顶A的倾角为45°,已知金龙山的山顶距地面的标高(线段BC的长度)为60米,请计算观音大佛的高度为多少米?(结果精确到0.1米,≈1.73)
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,与反比例函数 的图象在第二象限交于点 , 轴,垂足为点 , , , .
(1)求反比例函数的解析式;
(2)若点 是反比例函数图象在第四象限上的点,过点 作 轴,垂足为点 ,连接 、 .如果 ,求点 的坐标.
在三角形纸片 (如图1)中, , .小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2).
(1) ;
(2)求正五边形 的边 的长.
参考值: , , .
(1)计算:+sin60°+
(2)先化简,再求值:a(a﹣3b)+﹣a(a﹣b),其中a=1,b=﹣2.
如图,将 沿着射线 方向平移至△ ,使点 落在 的外角平分线 上,连接 .
(1)判断四边形 的形状,并说明理由;
(2)在 中, , , ,求 的长.
如图,平面内的两条直线 、 ,点 , 在直线 上,点 、 在直线 上,过 、 两点分别作直线 的垂线,垂足分别为 , ,我们把线段 叫做线段 在直线 上的正投影,其长度可记作 或 ,特别地线段 在直线 上的正投影就是线段 .
请依据上述定义解决如下问题:
(1)如图1,在锐角 中, , ,则 ;
(2)如图2,在 中, , , ,求 的面积;
(3)如图3,在钝角 中, ,点 在 边上, , , ,求 ,
在 中, ,点 与点 在 同侧, ,且 ,过点 作 交 于点 , 为 的中点,连接 , .
(1)如图1,当 时,线段 与 的数量关系是 ;
(2)如图2,当 时,试探究线段 与 的数量关系,并证明你的结论;
(3)如图3,当 时,求 的值.
如图,在 中, , , ,以边 上一点 为圆心, 为半径的 经过点 .
(1)求 的半径;
(2)点 为劣弧 中点,作 ,垂足为 ,求 的长;
(3)在(2)的条件下,连接 ,求 的值.
如图,在 中, , , .
(1)求 的长;
(2)利用此图形求 的值(精确到0.1,参考数据: , ,
问题:已知 、 均为锐角, , ,求 的度数.
探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为 ,请借助这个网格图求出 的度数;
延伸:(2)设经过图中 、 、 三点的圆弧与 交于 ,求 的弧长.
如图,在 中,半径 ,过点 的中点 作 交 于 、 两点,且 ,以 为圆心, 为半径作 ,交 于 点.
(1)求 的半径 的长;
(2)计算阴影部分的面积.