如图①,抛物线与轴交于点,与轴交于点,,将直线绕点逆时针旋转,所得直线与轴交于点.
(1)求直线的函数解析式;
(2)如图②,若点是直线上方抛物线上的一个动点
①当点到直线的距离最大时,求点的坐标和最大距离;
②当点到直线的距离为时,求的值.
如图,在平面直角坐标系中,抛物线经过原点,顶点为.
(1)求抛物线的函数解析式;
(2)设点为抛物线的对称轴上的一点,点在该抛物线上,当四边
形为菱形时,求出点的坐标;
(3)在(2)的条件下,抛物线在第一象限的图象上是否存在一点,使得点到直线的距离与其到轴的距离相等?若存在,求出直线的函数解析式;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线经过原点,顶点为.
(1)求抛物线的函数解析式;
(2)设点为抛物线的对称轴上的一点,点在该抛物线上,当四边
形为菱形时,求出点的坐标;
(3)在(2)的条件下,抛物线在第一象限的图象上是否存在一点,使得点到直线的距离与其到轴的距离相等?若存在,求出直线的函数解析式;若不存在,请说明理由.
如图1,经过等边的顶点,(圆心在内),分别与,的延长线交于点,,连结,交于点.
(1)求证:.
(2)当,时,求的长.
(3)设,.
①求关于的函数表达式;
②如图2,连结,,若的面积是面积的10倍,求的值.
如图1,已知在平面直角坐标系中,四边形是矩形,点,分别在轴和轴的正半轴上,连结,,,是的中点.
(1)求的长和点的坐标;
(2)如图2,是线段上的点,,点是线段上的一个动点,经过,,三点的抛物线交轴的正半轴于点,连结交于点.
①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;
②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.
如图,已知锐角三角形内接于圆,于点,连接.
(1)若,
①求证:.
②当时,求面积的最大值.
(2)点在线段上,,连接,设,,是正数),若,求证:.
如图,在平面直角坐标系中,抛物线与轴交于点,(点在点的左侧),交轴于点,点为抛物线的顶点,对称轴与轴交于点.
(1)连结,点是线段上一动点(点不与端点,重合),过点作,交抛物线于点(点在对称轴的右侧),过点作轴,垂足为,交于点,点是线段上一动点,当取得最大值时,求的最小值;
(2)在(1)中,当取得最大值,取得最小值时,把点向上平移个单位得到点,连结,把绕点顺时针旋转一定的角度,得到△,其中边交坐标轴于点.在旋转过程中,是否存在一点,使得?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.
如图,是的直径,、两点在的延长线上,是上的点,且,延长至,使得,设,.
(1)求证:;
(2)求,的长;
(3)若点在、、三点确定的圆上,求的长.
问题提出
(1)如图①,在中,,,点关于所在直线的对称点为,则的长度为 .
问题探究
(2)如图②,半圆的直径,是的中点,点在上,且,是上的动点,试求的最小值.
问题解决
(3)如图③,扇形花坛的半径为,.根据工程需要.现想在上选点,在边上选点,在边上选点,用装饰灯带在花坛内的地面上围成一个,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带的长度最短,并且用长度最短的灯带围成的为等腰三角形.试求的值最小时的等腰的面积.(安装损耗忽略不计)
在中,,分别是两边的中点,如果上的所有点都在的内部或边上,则称为的中内弧.例如,图1中是的一条中内弧.
(1)如图2,在中,,,分别是,的中点,画出的最长的中内弧,并直接写出此时的长;
(2)在平面直角坐标系中,已知点,,,,在中,,分别是,的中点.
①若,求的中内弧所在圆的圆心的纵坐标的取值范围;
②若在中存在一条中内弧,使得所在圆的圆心在的内部或边上,直接写出的取值范围.
如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则∠BCD= °,cos∠MCN= .
若一个三角形的三个顶点均在一个图形的不同的边上,则称此三角形为该图形的内接三角形.
(1)在图①中画出△ABC的一个内接直角三角形;
(2)如图②,已知△ABC中,∠BAC=60°,∠B=45°,AB=8,AD为BC边上的高,探究以D为一个顶点作△ABC的内接三角形,其周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)如图③,△ABC为等腰直角三角形,∠C=90°,AC=6,试探究:△ABC的内接等腰直角三角形的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定 表示这三个数的平均数,表示这三个数中的最小的数,表示这三个数中最大的数.例如:,,;,.
(1)请填空: ;若,则 ;
(2)若,求的取值范围;
(3)若,求的值.
某地因持续高温干旱,村民饮水困难,镇政府组织村民组成水源行动小组到村镇周边找水。某村民在山洞里发现了暗河(如图所示),经勘察,在山洞的西面有一条南北走向的公路连接着两村庄,山洞位于村庄南偏东方向,且位于村庄南偏东方向。为方便两村庄的村民取水,准备从山洞处向公路紧急修建一条最近的简易公路,现已知两村庄相距6千米。
(1)求这条最近的简易公路的长(精确到0.1千米)?
(2)现由甲、乙两施工队共同合作修建这条公路,已知甲施工队修建2千米后,由乙施工队继续修建,乙施工队每天施工的速度是甲施工队每天施工速度的1.6倍,8天后,公路正式通车。求甲、乙两施工队每天修建公路多少千米?
(参考数据:,)