问题提出
(1)如图①,在ΔABC中,AB=4,∠A=135°,点B关于AC所在直线的对称点为B',则BB'的长度为 .
问题探究
(2)如图②,半圆O的直径AB=10,C是AB̂的中点,点D在BĈ上,且CD̂=2BD̂,P是AB上的动点,试求PC+PD的最小值.
问题解决
(3)如图③,扇形花坛AOB的半径为20m,∠AOB=45°.根据工程需要.现想在AB̂上选点P,在边OA上选点E,在边OB上选点F,用装饰灯带在花坛内的地面上围成一个ΔPEF,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带PE+EF+FP的长度最短,并且用长度最短的灯带围成的ΔPEF为等腰三角形.试求PE+EF+FP的值最小时的等腰ΔPEF的面积.(安装损耗忽略不计)
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A.与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC.AD.BC之间的数量关系,并说明理由;(3)若,求大圆与小圆围成的圆环的面积.(结果保留π)
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60角.在A处测得树顶D的俯角为15.如图所示,已知AB与地面的夹角为 60,AB为8米.请你帮助小强计算一下这颗大树的高度? (结果精确到1米 .参考数据≈1.4 ≈1.7)
一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4,小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球.(1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率.
泰州梅兰芳公园开放后,前往参观的人非常多.5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同. (1)这里采用的调查方式是 ; (2)求表中a、b、c的值,并请补全频数分布直方图; (3)在调查人数里,等候时间少于40min的有 人; (4)此次调查中,中位数所在的时间段是 ~ min.|X