初中数学

如图所示,抛物线 y = x 2 - 2 x - 3 x 轴相交于 A B 两点,与 y 轴相交于点 C ,点 M 为抛物线的顶点.

(1)求点 C 及顶点 M 的坐标.

(2)若点 N 是第四象限内抛物线上的一个动点,连接 BN CN ,求 ΔBCN 面积的最大值及此时点 N 的坐标.

(3)若点 D 是抛物线对称轴上的动点,点 G 是抛物线上的动点,是否存在以点 B C D G 为顶点的四边形是平行四边形.若存在,求出点 G 的坐标;若不存在,试说明理由.

(4)直线 CM x 轴于点 E ,若点 P 是线段 EM 上的一个动点,是否存在以点 P E O 为顶点的三角形与 ΔABC 相似.若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2020年湖南省怀化市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知抛物线 y = a x 2 + 4 ax + 4 a - 6 ( a > 0 ) x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,顶点为点 D

(1)当 a = 6 时,直接写出点 A B C D 的坐标:

A    B    C    D   

(2)如图1,直线 DC x 轴于点 E ,若 tan AED = 4 3 ,求 a 的值和 CE 的长;

(3)如图2,在(2)的条件下,若点 N OC 的中点,动点 P 在第三象限的抛物线上,过点 P x 轴的垂线,垂足为 Q ,交 AN 于点 F ;过点 F FH DE ,垂足为 H .设点 P 的横坐标为 t ,记 f = FP + FH

①用含 t 的代数式表示 f

②设 - 5 < t m ( m < 0 ) ,求 f 的最大值.

来源:2020年湖北省孝感市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 1 的对称轴为直线 x = 3 2 ,其图象与 x 轴交于点 A 和点 B ( 4 , 0 ) ,与 y 轴交于点 C

(1)直接写出抛物线的解析式和 CAO 的度数;

(2)动点 M N 同时从 A 点出发,点 M 以每秒3个单位的速度在线段 AB 上运动,点 N 以每秒 2 个单位的速度在线段 AC 上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t ( t > 0 ) 秒,连接 MN ,再将线段 MN 绕点 M 顺时针旋转 90 ° ,设点 N 落在点 D 的位置,若点 D 恰好落在抛物线上,求 t 的值及此时点 D 的坐标;

(3)在(2)的条件下,设 P 为抛物线上一动点, Q y 轴上一动点,当以点 C P Q 为顶点的三角形与 ΔMDB 相似时,请直接写出点 P 及其对应的点 Q 的坐标.(每写出一组正确的结果得1分,至多得4分)

来源:2020年湖北省随州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax + c 过点 A ( - 1 , 0 ) C ( 0 , 3 ) ,与 x 轴交于另一点 B ,顶点为 D

(1)求抛物线的解析式,并写出 D 点的坐标;

(2)如图1, E 为线段 BC 上方的抛物线上一点, EF BC ,垂足为 F EM x 轴,垂足为 M ,交 BC 于点 G .当 BG = CF 时,求 ΔEFG 的面积;

(3)如图2, AC BD 的延长线交于点 H ,在 x 轴上方的抛物线上是否存在点 P ,使 OPB = AHB ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2020年湖北省十堰市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, A ( - 2 , - 1 ) B ( 3 , - 1 ) ,以 O 为圆心, OA 的长为半径的半圆 O AO 延长线于 C ,连接 AB BC ,过 O ED / / BC 分别交 AB 和半圆 O E D ,连接 OB CD

(1)求证: BC 是半圆 O 的切线;

(2)试判断四边形 OBCD 的形状,并说明理由;

(3)如图2,若抛物线经过点 D 且顶点为 E

①求此抛物线的解析式;

②点 P 是此抛物线对称轴上的一个动点,以 E D P 为顶点的三角形与 ΔOAB 相似,问抛物线上是否存在一点 Q .使 S ΔEPQ = S ΔOAB ?若存在,请直接写出 Q 点的横坐标;若不存在,说明理由.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点(点在点左边),与轴交于点.直线经过两点.

(1)求抛物线的解析式;

(2)点是抛物线上的一动点,过点且垂直于轴的直线与直线轴分别交于点,垂足为.设

①点在抛物线上运动,若三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的的值;

②当点在直线下方的抛物线上运动时,是否存在一点,使相似.若存在,求出点的坐标;若不存在,请说明理由.

来源:2020年湖北省鄂州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过两点是抛物线与轴的交点.

(1)求抛物线的解析式;

(2)点在平面直角坐标系第一象限内的抛物线上运动,设的面积为,求关于的函数表达式(指出自变量的取值范围)和的最大值;

(3)点在抛物线上运动,点轴上运动,是否存在点、点使得,且相似,如果存在,请求出点和点的坐标.

来源:2020年贵州省铜仁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,抛物线与抛物线相交轴于点,抛物线轴交于两点(点在点的右侧),直线轴负半轴于点,交轴于点,且

(1)求抛物线的解析式与的值;

(2)抛物线的对称轴交轴于点,连接,在轴上方的对称轴上找一点,使以点为顶点的三角形与相似,求出的长;

(3)如图2,过抛物线上的动点轴于点,交直线于点,若点是点关于直线的对称点,是否存在点(不与点重合),使点落在轴上?若存在,请直接写出点的横坐标,若不存在,请说明理由.

来源:2020年黑龙江省绥化市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形的边轴上,轴上.为坐标原点,,线段的长分别是方程的两个根

(1)求点的坐标;

(2)上一点,上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;

(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 3 + 3 6 x 2 + bx + c x 轴交于 A B 两点,点 A B 分别位于原点的左、右两侧, BO = 3 AO = 3 ,过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C D BC = 3 CD

(1)求 b c 的值;

(2)求直线 BD 的函数解析式;

(3)点 P 在抛物线的对称轴上且在 x 轴下方,点 Q 在射线 BA 上.当 ΔABD ΔBPQ 相似时,请直接写出所有满足条件的点 Q 的坐标.

来源:2020广东省中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,已知抛物线轴相交于两点(点在点的左侧),与轴交于点

(1)点的坐标为  ,点的坐标为  ,线段的长为  ,抛物线的解析式为  

(2)点是线段下方抛物线上的一个动点.

①如果在轴上存在点,使得以点为顶点的四边形是平行四边形.求点的坐标.

②如图2,过点交线段于点,过点作直线于点,交轴于点,记,求关于的函数解析式;当时,试比较的对应函数值的大小.

来源:2019年湖北省孝感市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,直线轴,轴分别交于点,点,对称轴为的抛物线过两点,且交轴于另一点,连接

(1)直接写出点,点,点的坐标和抛物线的解析式;

(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;

(3)抛物线上是否存在一点(点除外),使以点为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.

来源:2019年湖北省襄阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,点为坐标原点,抛物线轴交于点,与轴交于点

(1)直接写出抛物线的解析式及其对称轴;

(2)如图2,连接,设点是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点于点,交轴于点,过点于点,交轴于点.设线段的长为,求的函数关系式,并注明的取值范围;

(3)在(2)的条件下,若的面积为

①求点的坐标;

②设为直线上一动点,连接,直线交直线于点,则点在运动过程中,在抛物线上是否存在点,使得为等腰直角三角形?若存在,请直接写出点及其对应的点的坐标;若不存在,请说明理由.

来源:2019年湖北省随州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知抛物线经过点,与轴交于另一点,顶点为

(1)求抛物线的解析式,并写出点的坐标;

(2)如图,点分别在线段点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;

(3)若点在抛物线上,且,试确定满足条件的点的个数.

来源:2019年湖北省十堰市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,抛物线的图象经过点,顶点的坐标为,与轴交于两点.

(1)求抛物线的解析式.

(2)连接为直线上一点,当时,求点的坐标和的值.

(3)点轴上一动点,当为何值时,的值最小.并求出这个最小值.

(4)点关于轴的对称点为,当取最小值时,在抛物线的对称轴上是否存在点,使是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.

来源:2019年湖北省恩施州中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题