如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足PE2=PA•PC,连接CE,AE,OE,OE交CA于点D.
(1)求证:△PAE∽△PEC;
(2)求证:PE为⊙O的切线;
(3)若∠B=30°, ,求证:DO=DP.
如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径
(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若 ,AE=4,求CD.
如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.
如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D,E为 的中点,连接CE,BE,BE交AC于F.
(1)求证:AB=AF;
(2)若AB=3,BC=4,求CE的长.
如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.
(1)求证:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半径.
如图,⊙ O是△ ABC的外接圆, BC是⊙ O的直径,∠ ABC=30°,过点 B作⊙ O的切线 BD,与 CA的延长线交于点 D,与半径 AO的延长线交于点 E,过点 A作⊙ O的切线 AF,与直径 BC的延长线交于点 F.
(1)求证:△ ACF∽△ DAE;
(2)若 ,求 DE的长;
(3)连接 EF,求证: EF是⊙ O的切线.
如图,已知⊙ O的半径为2, AB为直径, CD为弦. AB与 CD交于点 M,将 沿 CD翻折后,点 A与圆心 O重合,延长 OA至 P,使 AP= OA,连接 PC
(1)求 CD的长;
(2)求证: PC是⊙ O的切线;
(3)点 G为 的中点,在 PC延长线上有一动点 Q,连接 QG交 AB于点 E.交 于点 F( F与 B、 C不重合).问 GE• GF是否为定值?如果是,求出该定值;如果不是,请说明理由.
如图,在平面直角坐标系 xOy中,直线 y=﹣ x+3与 x轴交于点 C,与直线 AD交于点 ,点 D的坐标为(0,1)
(1)求直线 AD的解析式;
(2)直线 AD与 x轴交于点 B,若点 E是直线 AD上一动点(不与点 B重合),当△ BOD与△ BCE相似时,求点 E的坐标.
如图, 是 的外接圆,直线 与 相切于点 , ,连接 交 于点 .
(1)求证: 平分 ;
(2)若 的平分线 交 于点 ,且 , ,求 的长.
某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比 .如图,圆内接正五边形 ,圆心为 , 与 交于点 , 、 与 分别交于点 、 .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)
(1)求证: 是等腰三角形且底角等于 ,并直接说出 的形状;
(2)求证: ,且其比值 ;
(3)由对称性知 ,由(1)(2)可知 也是一个黄金分割数,据此求 的值.
(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中, 的三个顶点均在格点上.
①请按要求画图:将 绕点 顺时针方向旋转 ,点 的对应点为点 ,点 的对应点为点 .连接 ;
②在①中所画图形中, .
(2)【问题解决】
如图2,在 中, , ,延长 到 ,使 ,将斜边 绕点 顺时针旋转 到 ,连接 ,求 的度数.
(3)【拓展延伸】
如图3,在四边形 中, ,垂足为 , , , , 为常数),求 的长(用含 的式子表示).
如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,直线 经过 , 两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线 ,当直线 与抛物线有唯一公共点 时,求此时点 的坐标;
(3)过(2)中的点 作 轴,交 轴于点 .若点 是抛物线上一个动点,点 是 轴上一个动点,是否存在以 , , 三点为顶点的直角三角形(其中 为直角顶点)与 相似?如果存在,请直接写出满足条件的点 的个数和其中一个符合条件的点 的坐标;如果不存在,请说明理由.
如图,在矩形 中, ,点 是线段 延长线上的一个动点,连接 ,过点 作 交射线 于点 .
(1)如图1,若 ,则 与 之间的数量关系是 ;
(2)如图2,若 ,试判断 与 之间的数量关系,写出结论并证明;(用含 的式子表示)
(3)若 ,连接 交 于点 ,连接 ,当 时,求 的长.
在 中, , ,点 为线段 延长线上一动点,连接 ,将线段 绕点 逆时针旋转,旋转角为 ,得到线段 ,连接 , .
(1)如图1,当 时,
①求证: ;
②求 的度数;
(2)如图2,当 时,请直接写出 和 的数量关系.
(3)当 时,若 , ,请直接写出点 到 的距离为 .