(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中, ΔABC 的三个顶点均在格点上.
①请按要求画图:将 ΔABC 绕点 A 顺时针方向旋转 90 ° ,点 B 的对应点为点 B ' ,点 C 的对应点为点 C ' .连接 BB ' ;
②在①中所画图形中, ∠ AB ' B = ° .
(2)【问题解决】
如图2,在 Rt Δ ABC 中, BC = 1 , ∠ C = 90 ° ,延长 CA 到 D ,使 CD = 1 ,将斜边 AB 绕点 A 顺时针旋转 90 ° 到 AE ,连接 DE ,求 ∠ ADE 的度数.
(3)【拓展延伸】
如图3,在四边形 ABCD 中, AE ⊥ BC ,垂足为 E , ∠ BAE = ∠ ADC , BE = CE = 1 , CD = 3 , AD = kAB ( k 为常数),求 BD 的长(用含 k 的式子表示).
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1) 判断△ABC和△DEF是否相似,并说明理由;(2) P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出1个符合条件的三角形,并在图中连结相应线段,不必说明理由).
解方程: x2+2x-1="0"
(本题12分)如图,已知抛物线y=x2+3与x轴交于点A、B,与直线y=x+b相交于点B、C,直线y=x+b与y轴交于点E.(1)写出直线BC的解析式;(2)求△ABC的面积;(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动。设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
(本题满分12分) 如图所示,是圆O的一条弦,,垂足为,交圆O于点,点在圆O上.(1)若,求的度数;(2)若,,求的长.
(本题10分)如图,已知E是平行四边形ABCD的BC边延长线上一点,AE交CD于F,CE=BC。(1)求证:△ECF∽△ADF; (2)S△ADF : S△CEF的值。