如图, BC 是 ⊙ O 的直径, AD 是 ⊙ O 的弦, AD 交 BC 于点 E ,连接 AB , CD ,过点 E 作 EF ⊥ AB ,垂足为 F , ∠ AEF = ∠ D .
(1)求证: AD ⊥ BC ;
(2)点 G 在 BC 的延长线上,连接 AG , ∠ DAG = 2 ∠ D .
①求证: AG 与 ⊙ O 相切;
②当 AF BF = 2 5 , CE = 4 时,直接写出 CG 的长.
如图,△ABC在方格纸中 (1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标; (2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′,并写出A′、B′、C′的坐标。
已知抛物线y=ax2+bx+c(a0)与x轴的两交点的横坐标分别是-1和3,与y轴交点的纵坐标是-; (1)确定抛物线的解析式; (2)说出抛物线的开口方向,对称轴和顶点坐标。
如图,在矩形中,点分别在边上,,AB=6,AE=8,DE=2,求的长.
小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单 位:平方米)随矩形一边长x(单位:米)的变化而变化. (1)求S与x之间的函数关系式,并写出自变量x的取值范围; (2)当x是多少时,矩形场地面积S最大?最大面积是多少?
(本题12分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:
已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户. (1)满足条件的方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?