如图, 是 的直径, 是弦, 于点 , 于点 .若 , ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点 、 、 在同一条直线上),发现 且 .
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形 绕点 按逆时针方向旋转(如图 ,还能得到 吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形 和菱形 ,将菱形 绕点 按顺时针方向旋转(如图 ,试问当 与 的大小满足怎样的关系时,背景中的结论 仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形 和矩形 ,且 , , ,将矩形 绕点 按顺时针方向旋转(如图 ,连接 , .小组发现:在旋转过程中, 的值是定值,请求出这个定值.
如图,正方形 中, 绕点 逆时针旋转到△ , , 分别交对角线 于点 , ,若 ,则 的值为 .
已知:在矩形中,,分别是边,上的点,过点作的垂线交于点,以为直径作半圆.
(1)填空:点 (填“在”或“不在” 上;当时,的值是 ;
(2)如图1,在中,当时,求证:;
(3)如图2,当的顶点是边的中点时,求证:;
(4)如图3,点在线段的延长线上,若,连接交于点,连接,当时,,,求的值.
如图,点是线段上一点,,以点为圆心,的长为半径作,过点作的垂线交于,两点,点在线段的延长线上,连接交于点,以,为边作.
(1)求证:是的切线;
(2)若,求四边形与重叠部分的面积;
(3)若,,连接,求和的长.
如图,点是的内心,的延长线与的外接圆交于点,与交于点,延长、相交于点,的平分线交于点.
(1)求证:;
(2)求证:;
(3)若,,求的长.
(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.
①求证:;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,,求的长.
如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,
,与交于点,连接,若,,则 .
定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点,,在上,的平分线交于点,连接,.
求证:四边形是等补四边形;
探究:
(2)如图2,在等补四边形中,,连接,是否平分?请说明理由.
运用:
(3)如图3,在等补四边形中,,其外角的平分线交的延长线于点,,,求的长.
在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点 重合,顶点 , 恰好分别落在函数 , 的图象上,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
已知内接于,的平分线交于点,连接,.
(1)如图①,当时,请直接写出线段,,之间满足的等量关系式: ;
(2)如图②,当时,试探究线段,,之间满足的等量关系,并证明你的结论;
(3)如图③,若,,求的值.
如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒3个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒2个单位长度的速度沿边向终点运动.设运动的时间为秒,.
(1)直接写出关于的函数解析式及的取值范围: ;
(2)当时,求的值;
(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.