初中数学

如图,在 ΔABC 中, DE / / BC BF 平分 ABC ,交 DE 的延长线于点 F .若 AD = 1 BD = 2 BC = 4 ,则 EF =   

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) B ( 0 , 4 ) C ( 3 , 0 ) .动点 M N 同时从 A 点出发, M 沿 A C N 沿折线 A B C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN

(1)求直线 BC 的解析式;

(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;

(3)当点 M N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图①,在四边形 ABCD 中, AC BD 于点 E AB = AC = BD ,点 M BC 中点, N 为线段 AM 上的点,且 MB = MN

(1)求证: BN 平分 ABE

(2)若 BD = 1 ,连接 DN ,当四边形 DNBC 为平行四边形时,求线段 BC 的长;

(3)如图②,若点 F AB 的中点,连接 FN FM ,求证: ΔMFN ΔBDC

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在边长为1的小正方形网格中,点 A B C D 都在这些小正方形的顶点上, AB CD 相交于点 O ,则 tan AOD =   

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 AB CD O 的直径,过点 C O 的切线交 AB 的延长线于点 P O 的弦 DE AB 于点 F ,且 DF = EF

(1)求证: C O 2 = OF · OP

(2)连接 EB CD 于点 G ,过点 G GH AB 于点 H ,若 PC = 4 2 PB = 4 ,求 GH 的长.

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别在 BC AC 边上,连接 BE AD 交于点 P ,设 AC = kBD CD = kAE k 为常数,试探究 APE 的度数:

(1)如图1,若 k = 1 ,则 APE 的度数为  

(2)如图2,若 k = 3 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 APE 的度数.

(3)如图3,若 k = 3 ,且 D E 分别在 CB CA 的延长线上,(2)中的结论是否成立,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, P O 外的一点, PA PB O 的两条切线, A B 是切点, PO AB 于点 F ,延长 BO O 于点 C ,交 PA 的延长交于点 Q ,连接 AC

(1)求证: AC / / PO

(2)设 D PB 的中点, QD AB 于点 E ,若 O 的半径为3, CQ = 2 ,求 AE BE 的值.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1, D O 的直径 BC 上的一点,过 D DE BC O E N F O 上的一点,过 F 的直线分别与 CB DE 的延长线相交于 A P ,连接 CF PD M C = 1 2 P

(1)求证: PA O 的切线;

(2)若 A = 30 ° O 的半径为4, DM = 1 ,求 PM 的长;

(3)如图2,在(2)的条件下,连接 BF BM ;在线段 DN 上有一点 H ,并且以 H D C 为顶点的三角形与 ΔBFM 相似,求 DH 的长度.

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 4 BC = 3 ,以点 A 为原点建立平面直角坐标系,使 AB x 轴正半轴上,点 D AC 边上的一个动点, DE / / AB BC E DF AB F EG AB G .以下结论:

ΔAFD ΔDCE ΔEGB

②当 D AC 的中点时, ΔAFD ΔDCE

③点 C 的坐标为 ( 3 . 2 , 2 . 4 )

④将 ΔABC 沿 AC 所在的直线翻折到原来的平面,点 B 的对应点 B 1 的坐标为 ( 1 . 6 , 4 . 8 )

⑤矩形 DEGF 的最大面积为3.在这些结论中正确的有  (只填序号)

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, AD ΔABC 的外接圆 O 的直径,点 P BC 延长线上,且满足 PAC = B

(1)求证: PA O 的切线;

(2)弦 CE AD AB 于点 F ,若 AF · AB = 12 ,求 AC 的长.

来源:2018年四川省甘孜州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在直角三角形 ABC 中, ACB = 90 ° ,点 H ΔABC 的内心,

AH 的延长线和三角形 ABC 的外接圆 O 相交于点 D ,连接 DB

(1)求证: DH = DB

(2)过点 D BC 的平行线交 AC AB 的延长线分别于点 E F ,已知 CE = 1 ,圆 O 的直径为5.

①求证: EF 为圆 O 的切线;

②求 DF 的长.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

矩形 AOBC 中, OB = 4 OA = 3 .分别以 OB OA 所在直线为 x 轴, y 轴,建立如图1所示的平面直角坐标系. F BC 边上一个动点(不与 B C 重合),过点 F 的反比例函数 y = k x ( k > 0 ) 的图象与边 AC 交于点 E

(1)当点 F 运动到边 BC 的中点时,求点 E 的坐标;

(2)连接 EF ,求 EFC 的正切值;

(3)如图2,将 ΔCEF 沿 EF 折叠,点 C 恰好落在边 OB 上的点 G 处,求此时反比例函数的解析式.

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, E F 是平行四边形 ABCD 对角线 AC 上两点, AE = CF = 1 4 AC .连接 DE DF 并延长,分别交 AB BC 于点 G H ,连接 GH ,则 S ΔADG S ΔBGH 的值为 (    )

A. 1 2 B. 2 3 C. 3 4 D.1

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AD 平分 BAC BC 于点 D O AB 上一点,经过点 A D O 分别交 AB AC 于点 E F ,连接 OF AD 于点 G

(1)求证: BC O 的切线;

(2)设 AB = x AF = y ,试用含 x y 的代数式表示线段 AD 的长;

(3)若 BE = 8 sin B = 5 13 ,求 DG 的长,

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D E 分别是边 AC AB 的中点, BD CE 交于点 O ,连接 DE .下列结论:① OE OB = OD OC ;② DE BC = 1 2 ;③ S ΔDOE S ΔBOC = 1 2 ;④ S ΔDOE S ΔDBE = 1 3 .其中正确的个数有 (    )

A.1个B.2个C.3个D.4个

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题