初中数学

如图,在平面直角坐标系 xOy 中,直线 y = x + m 分别交 x 轴, y 轴于 A B 两点,已知点 C ( 2 , 0 )

(1)当直线 AB 经过点 C 时,点 O 到直线 AB 的距离是  

(2)设点 P 为线段 OB 的中点,连接 PA PC ,若 CPA = ABO ,则 m 的值是  

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中,点 D E 分别在边 AC AB 上, AG BC 于点 G AF DE 于点 F EAF = GAC

(1)求证: ΔADE ΔABC

(2)若 AD = 3 AB = 5 ,求 AF AG 的值.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 15 AC = 20 ,点 D 在边 AC 上, AD = 5 DE BC 于点 E ,连接 AE ,则 ΔABE 的面积等于  

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D E 分别在边 AB AC 上, DE / / BC ,若 BD = 2 AD ,则 (    )

A. AD AB = 1 2 B. AE EC = 1 2 C. AD EC = 1 2 D. DE BC = 1 2

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,一张三角形纸片 ABC ,其中 C = 90 ° AC = 4 BC = 3 .现小林将纸片做三次折叠:第一次使点 A 落在 C 处;将纸片展平做第二次折叠,使点 B 落在 C 处;再将纸片展平做第三次折叠,使点 A 落在 B 处.这三次折叠的折痕长依次记为 a b c ,则 a b c 的大小关系是 (    )

A. c > a > b B. b > a > c C. c > b > a D. b > c > a

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形 ABCD 中, A = B = C ,求 A 的取值范围;

(2)如图,折叠平行四边形纸片 DEBF ,使顶点 E F 分别落在边 BE BF 上的点 A C 处,折痕分别为 DG DH .求证:四边形 ABCD 是三等角四边形.

(3)三等角四边形 ABCD 中, A = B = C ,若 CB = CD = 4 ,则当 AD 的长为何值时, AB 的长最大,其最大值是多少?并求此时对角线 AC 的长.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为点 P ,直线 BF AD 的延长线交于点 F ,且 AFB = ABC

(1)求证:直线 BF O 的切线.

(2)若 CD = 2 3 OP = 1 ,求线段 BF 的长.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC = 25 AB = 30 D AB 上的一点(不与 A B 重合), DE BC ,垂足是点 E ,设 BD = x ,四边形 ACED 的周长为 y ,则下列图象能大致反映 y x 之间的函数关系的是 (    )

A.B.

C.D.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在 ΔABC 中, CD 为角平分线, A = 40 ° B = 60 ° ,求证: CD ΔABC 的完美分割线.

(2)在 ΔABC 中, A = 48 ° CD ΔABC 的完美分割线,且 ΔACD 为等腰三角形,求 ACB 的度数.

(3)如图2, ΔABC 中, AC = 2 BC = 2 CD ΔABC 的完美分割线,且 ΔACD 是以 CD 为底边的等腰三角形,求完美分割线 CD 的长.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 O 是等腰 Rt Δ ABC 的外接圆,点 D AC ̂ 上一点, BD AC 于点 E ,若 BC = 4 AD = 4 5 ,则 AE 的长是 (    )

A.3B.2C.1D.1.2

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 O 是等腰 Rt Δ ABC 的外接圆,点 D AC ̂ 上一点, BD AC 于点 E ,若 BC = 4 AD = 4 5 ,则 AE 的长是 (    )

A.3B.2C.1D.1.2

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中, B = 90 ° AC = 4 AB / / CD DH 垂直平分 AC ,点 H 为垂足.设 AB = x AD = y ,则 y 关于 x 的函数关系用图象大致可以表示为 (    )

A.B.

C.D.

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:

请你根据上述定义举一个等邻角四边形的例子;

(2)问题探究:

如图1,在等邻角四边形 ABCD 中, DAB = ABC AD BC 的中垂线恰好交于 AB 边上一点 P ,连接 AC BD ,试探究 AC BD 的数量关系,并说明理由;

(3)应用拓展:

如图2,在 Rt Δ ABC Rt Δ ABD 中, C = D = 90 ° BC = BD = 3 AB = 5 ,将 Rt Δ ABD 绕着点 A 顺时针旋转角 α ( 0 ° < α < BAC ) 得到 Rt AB ' D ' (如图 3 ) ,当凸四边形 AD ' BC 为等邻角四边形时,求出它的面积.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC ΔDEC 的面积相等,点 E BC 边上, DE / / AB AC 于点 F AB = 12 EF = 9 ,则 DF 的长是  

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题