如图,一次函数y=kx+b与反比例函数的图象相较于A(2,3),B(-3,n)两点。
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC
如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.
(1)求k的值;
(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?
如图,在每格为1个单位的正方形网格中建立直角坐标系,反比例函数的图象经过格点A.
(1)请写出点A的坐标、反比例函数的解析式;
(2)若点B(m,)、C(n,)(2<m<n)都在函数的图象上,试比较与 的大小.
如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线的图像经过BC的中点D,且与AB交于点E,连接DE。若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式.
如图,直线y=2x与反比例函数 (k≠0,x>0)的图像交于点A(1,a),点B是此反比例函数图形上任意一点(不与点A重合),BC⊥x轴于点C.
(1)求k的值.
(2)求△OBC的面积.
如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数(k≠0)的图象分别相交于点E、F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:
(1)①求反比例函数的解析式.
②当四边形AEGF为正方形时,求点F的坐标.
(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等(直接写出结论即可).这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
如图,已知在平面直角坐标系xoy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.
(1)求k和b的值;
(2)求△OAB的面积.
如图,反比例函数y=和一次函数y=2x-1,其中一次函数的图象经过(a,b)(a+1,b+k)两点.
(1)求反比例函数的解析式;
(2)若点A坐标是(1,1),请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的点P的坐标都求出来;若不存在,请说明理由;
(3)在(2)的条件下,请直接写出x取何值时,反比例函数值大于一次函数的值。
已知:如图,点B(3,3)在双曲线y=(其中x>0)上,点D在双曲线y= (其中x<0)上,点A、C分别在x、y轴的正半轴上,且点A、B、C、D围成的四边形为正方形.
(1)求k的值;
(2)设点A的坐标为(a,0),求a的值.
喝绿茶前需要烧水和泡茶两个工序,即需要将电热壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温 (℃)与时间菇(min)成一次函数关系;停止加热1分钟后(1分钟内水温不变),水壶中水的温度y(℃)与时间 (min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)求出图中AB所在直线对应的函数关系式,并且写出自变量的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第一象限,AD平行于轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标.
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
已知正比例函数和反比例函数的图象交于点A(m,一2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;
(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
如图,一次函数的图象与反比例函数的图象相交于点A(2,3)
和点B,与轴相交于点C(8,0) .
(1)求这两个函数的解析式;
(2)当取何值时,.