初中数学

数学活动﹣旋转变换

(1)如图①,在△ABC中, ABC 130 ° ,将△ABC绕点C逆时针旋转50°得到△ABC,连接BB′,求∠ABB的大小;

(2)如图②,在△ABC中, ABC 150 ° AB 3 BC 5 ,将△ABC绕点C逆时针旋转60°得到△ABC,连接BB′,以A′为圆心,AB′长为半径作圆.

(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;

(Ⅱ)连接AB,求线段AB的长度;

(3)如图③,在△ABC中, ABC α 90 ° α 180 ° AB m BC n ,将△ABC绕点C逆时针旋转2β角度 0 ° 2 β 180 ° 得到△ABC,连接ABBB′,以A′为圆心,AB′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段AB的长度(结果用角α或角β的三角函数及字母mn所组成的式子表示)

来源:2016年湖南省岳阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图①,在△ABC中, ACB 90 ° B 30 ° AC 1 DAB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).

(1)计算矩形EFGH的面积;

(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 3 16 时,求矩形平移的距离;

(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.

来源:2016年湖南省益阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,ABA1C1相交于点DACA1C1BC1分别交于点EF

(1)求证: BCF B A 1 D

(2)当 C α 度时,判定四边形A1BCE的形状并说明理由.

来源:2016年湖南省娄底市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

(1)【探究发现】

如图1,∠ EOF的顶点 O在正方形 ABCD两条对角线的交点处,∠ EOF=90°,将∠ EOF绕点 O旋转,旋转过程中,∠ EOF的两边分别与正方形 ABCD的边 BCCD交于点 E和点 F(点 F与点 CD不重合).则 CECFBC之间满足的数量关系是    

(2)【类比应用】

如图2,若将(1)中的"正方形 ABCD"改为"∠ BCD=120°的菱形 ABCD",其他条件不变,当∠ EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.

(3)【拓展延伸】

如图3,∠ BOD=120°, OD 3 4 OB=4, OA平分∠ BODAB 13 ,且 OB>2 OA,点 COB上一点,∠ CAD=60°,求 OC的长.

来源:2019年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD中, AB=3, BC=4,将矩形 ABCD绕点 C按顺时针方向旋转α角,得到矩形 A' B' C' D', B' CAD交于点 EAD的延长线与 A' D'交于点 F

(1)如图①,当α=60°时,连接 DD',求 DD'和 A' F的长;

(2)如图②,当矩形 A' B' CD'的顶点 A'落在 CD的延长线上时,求 EF的长;

(3)如图③,当 AEEF时,连接 ACCF,求 ACCF的值.

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,是有公共顶点的等腰直角三角形,,点为射线的交点.

(1)求证:

(2)若,把绕点旋转,

①当时,求的长;

②直接写出旋转过程中线段长的最小值与最大值.

来源:2016年福建省三明市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点E(与点BC不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点FBC的垂线交BC的延长线于点G,连接CF

(1)求证:△ABE≌△EGF

(2)若AB=2,SABE=2SECF,求BE

来源:2016年广西来宾市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD内作∠EAF=45°,AEBC于点EAFCD于点F,连接EF,过点AAHEF,垂足为H

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG

①求证:△AGE≌△AFE

②若BE=2,DF=3,求AH的长.

(2)如图3,连接BDAE于点M,交AF于点N.请探究并猜想:线段BMMNND之间有什么数量关系?并说明理由.

来源:2016年广西贵港市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△ABC′,点B′、C′分别是点BC的对应点.

(1)求过点B′的反比例函数解析式;

(2)求线段CC′的长.

来源:2016年广西百色市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, O 是坐标原点,抛物线 y = 1 2 x 2 + bx + c 经过点 B ( 6 , 0 ) 和点 C ( 0 , - 3 )

(1)求抛物线的表达式;

(2)如图2,线段 OC 绕原点 O 逆时针旋转 30 ° 得到线段 OD .过点 B 作射线 BD ,点 M 是射线 BD 上一点(不与点 B 重合),点 M 关于 x 轴的对称点为点 N ,连接 NM NB

①直接写出 ΔMBN 的形状为    

②设 ΔMBN 的面积为 S 1 ΔODB 的面积为是 S 2 .当 S 1 = 2 3 S 2 时,求点 M 的坐标;

(3)如图3,在(2)的结论下,过点 B BE BN ,交 NM 的延长线于点 E ,线段 BE 绕点 B 逆时针旋转,旋转角为 α ( 0 ° < α < 120 ° ) 得到线段 BF ,过点 F FK / / x 轴,交射线 BE 于点 K KBF 的角平分线和 KFB 的角平分线相交于点 G ,当 BG = 2 3 时,请直接写出点 G 的坐标为   

来源:2020年辽宁省沈阳市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图, A B 两点的坐标分别为 ( - 2 , 0 ) ( 0 , 3 ) ,将线段 AB 绕点 B 逆时针旋转 90 ° 得到线段 BC ,过点 C CD OB ,垂足为 D ,反比例函数 y = k x 的图象经过点 C

(1)直接写出点 C 的坐标,并求反比例函数的解析式;

(2)点 P 在反比例函数 y = k x 的图象上,当 ΔPCD 的面积为3时,求点 P 的坐标.

来源:2020年辽宁省盘锦市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 和正方形 CEFG (其中 BD > 2 CE ) BG 的延长线与直线 DE 交于点 H

(1)如图1,当点 G CD 上时,求证: BG = DE BG DE

(2)将正方形 CEFG 绕点 C 旋转一周.

①如图2,当点 E 在直线 CD 右侧时,求证: BH - DH = 2 CH

②当 DEC = 45 ° 时,若 AB = 3 CE = 1 ,请直接写出线段 DH 的长.

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图, ΔABC 在平面直角坐标系中,顶点的坐标分别为 A ( 4 , 4 ) B ( 1 , 1 ) C ( 4 , 1 )

(1)画出与 ΔABC 关于 y 轴对称的△ A 1 B 1 C 1

(2)将 ΔABC 绕点 O 1 顺时针旋转 90 ° 得到△ A 2 B 2 C 2 A A 2 弧是点 A 所经过的路径,则旋转中心 O 1 的坐标为   

(3)求图中阴影部分的面积(结果保留 π )

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

能够完全重合的平行四边形纸片 ABCD AEFG 按图①方式摆放,其中 AD = AG = 5 AB = 9 .点 D G 分别在边 AE AB 上, CD FG 相交于点 H

【探究】求证:四边形 AGHD 是菱形.

【操作一】固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点 F 与点 C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为       

【操作二】将图②中的平行四边形纸片 AEFG 绕着点 A 继续顺时针旋转一定的角度,使点 E 与点 B 重合,连接 DG CF ,如图③,若 sin BAD = 4 5 ,则四边形 DCFG 的面积为   

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图①,二次函数的图象与直线交于两点.点轴上的一个动点,过点轴的垂线交直线1于点,交该二次函数的图象于点,设点的横坐标为

(1)    

(2)若点在点的上方,且,求的值;

(3)将直线向上平移4个单位长度,分别与轴、轴交于点(如图②

①记的面积为的面积为,是否存在,使得点在直线的上方,且满足?若存在,求出及相应的的值;若不存在,请说明理由.

②当时,将线段绕点顺时针旋转得到线段,连接.若,直接写出直线与该二次函数图象交点的横坐标.

来源:2020年江苏省淮安市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学旋转的性质解答题