如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
(1)求证: △ BCF ≌ △ B A 1 D .
(2)当 ∠ C = α 度时,判定四边形A1BCE的形状并说明理由.
(本题满分10分)李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).⑴如果采购量x满足,求y与x之间的函数关系式;⑵已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?
(本题满分10分)用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示.(图中顶点横坐标为1,纵坐标为1.5)⑴写出y与x之间的函数关系式,指出当x为何值时,窗户透光面积最大? ⑵当窗户透光面积1.125m2时,窗框的两边长各是多少?
已知抛物线与x轴有两个不同的交点.(1) 求抛物线的对称轴;(2) 求c的取值范围;(3)若此抛物线与x轴两交点之间的距离为2,求c的值.
在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.⑴求圆心O到CD的距离;⑵求DE的长;⑶求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)
如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=6,求AB的长.