初中数学

如图1,点、点在直线上,反比例函数的图象经过点

(1)求的值;

(2)将线段向右平移个单位长度,得到对应线段,连接

①如图2,当时,过轴于点,交反比例函数图象于点,求的值;

②在线段运动过程中,连接,若是以为腰的等腰三角形,求所有满足条件的的值.

来源:2019年山东省济南市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

(年江西省南昌市)(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′ 的位置,拼成四边形AEE′D,则四边形AEE′D的形状为(    )
A.平行四边形          B.菱形          C.矩形          D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′ 的位置,拼成四边形AFF′D.
① 求证四边形AFF′D是菱形;
② 求四边形AFF′D两条对角线的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1 ) ,其中 ACB = DFE = 90 ° BC = EF = 3 cm AC = DF = 4 cm ,并进行如下研究活动.

活动一:将图1中的纸片 DEF 沿 AC 方向平移,连结 AE BD (如图 2 ) ,当点 F 与点 C 重合时停止平移.

[思考]图2中的四边形 ABDE 是平行四边形吗?请说明理由.

[发现]当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3 ) .求 AF 的长.

活动二:在图3中,取 AD 的中点 O ,再将纸片 DEF 绕点 O 顺时针方向旋转 α ( 0 α 90 ) ,连结 OB OE (如图 4 )

[探究]当 EF 平分 AEO 时,探究 OF BD 的数量关系,并说明理由.

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 A 的斜平移,如点 P ( 2 , 3 ) 经1次斜平移后的点的坐标为 ( 3 , 5 ) ,已知点 A 的坐标为 ( 1 , 0 )

(1)分别写出点 A 经1次,2次斜平移后得到的点的坐标.

(2)如图,点 M 是直线 l 上的一点,点 A 关于点 M 的对称点为点 B ,点 B 关于直线 l 的对称点为点 C

①若 A B C 三点不在同一条直线上,判断 ΔABC 是否是直角三角形?请说明理由.

②若点 B 由点 A n 次斜平移后得到,且点 C 的坐标为 ( 7 , 6 ) ,求出点 B 的坐标及 n 的值.

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在边长为1的菱形中,,将沿射线的方向平移得到△,分别连接,则的最小值为  

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线与直线交于点和点,与轴交于点

(1)求的值及抛物线的解析式;

(2)在图1中,把平移,始终保持点的对应点在抛物线上,点的对应点分别为,连接,若点恰好在直线上,求线段的长度;

(3)如图2,在抛物线上是否存在点(不与点重合),使的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年河南省中考数学试卷(备用卷)
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图1,经过原点 O 的抛物线 y = a x 2 + bx ( a b 为常数, a 0 ) x 轴相交于另一点 A ( 3 , 0 ) .直线 l : y = x 在第一象限内和此抛物线相交于点 B ( 5 , t ) ,与抛物线的对称轴相交于点 C

(1)求抛物线的解析式;

(2)在 x 轴上找一点 P ,使以点 P O C 为顶点的三角形与以点 A O B 为顶点的三角形相似,求满足条件的点 P 的坐标;

(3)直线 l 沿着 x 轴向右平移得到直线 l ' l ' 与线段 OA 相交于点 M ,与 x 轴下方的抛物线相交于点 N ,过点 N NE x 轴于点 E .把 ΔMEN 沿直线 l ' 折叠,当点 E ' 恰好落在抛物线上时(图 2 ) ,求直线 l ' 的解析式;

(4)在(3)问的条件下(图 3 ) ,直线 l ' y 轴相交于点 K ,把 ΔMOK 绕点 O 顺时针旋转 90 ° 得到△ M ' OK ' ,点 F 为直线 l ' 上的动点.当△ M ' FK ' 为等腰三角形时,求满足条件的点 F 的坐标.

来源:2018年湖南省湘西州中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.

(1)当 t = 1 3 秒时,点 Q 的坐标是  

(2)在运动过程中,设正方形 PQMN ΔAOB 重叠部分的面积为 S ,求 S t 的函数表达式;

(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图①,在△ABC中, ACB 90 ° B 30 ° AC 1 DAB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).

(1)计算矩形EFGH的面积;

(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 3 16 时,求矩形平移的距离;

(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.

来源:2016年湖南省益阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

已知: Rt Δ EFP 和矩形 ABCD 如图①摆放(点 P 与点 B 重合),点 F B ( P ) C 在同一直线上, AB = EF = 6 cm BC = FP = 8 cm EFP = 90 ° .如图②, ΔEFP 从图①的位置出发,沿 BC 方向匀速运动,速度为 1 cm / s EP AB 交于点 G ;同时,点 Q 从点 C 出发,沿 CD 方向匀速运动,速度为 1 cm / s .过点 Q QM BD ,垂足为 H ,交 AD 于点 M ,连接 AF PQ ,当点 Q 停止运动时, ΔEFP 也停止运动.设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, PQ / / BD

(2)设五边形 AFPQM 的面积为 y ( c m 2 ) ,求 y t 之间的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形AFPQM : S 矩形ABCD = 9 : 8 ?若存在,求出 t 的值;若不存在,请说明理由.

(4)在运动过程中,是否存在某一时刻 t ,使点 M 在线段 PG 的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,在△ ABC中,∠ ACB=90°,∠ B=30°, AC=4, DAB的中点, EF是△ ACD的中位线,矩形 EFGH的顶点都在△ ACD的边上.

(1)求线段 EFFG的长;

(2)如图2,将矩形 EFGH沿 AB向右平移,点 F落在 BC上时停止移动,设矩形移动的距离为 x,矩形与△ CBD重叠部分的面积为 S,求出 S关于 x的函数解析式;

(3)如图3,矩形 EFGH平移停止后,再绕点 G按顺时针方向旋转,当点 H落在 CD边上时停止旋转,此时矩形记作 E 1 F 1 GH 1,设旋转角为α,求cosα的值.

来源:2017年内蒙古兴安盟中考数学试卷(b卷)
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 15 BC = 20 ,把边 AB 沿对角线 BD 平移,点 A ' B ' 分别对应点 A B 给出下列结论:

①顺次连接点 A ' B ' C D 的图形是平行四边形;

②点 C 到它关于直线 AA ' 的对称点的距离为48;

A ' C - B ' C 的最大值为15;

A ' C + B ' C 的最小值为 9 17

其中正确结论的个数是 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为 6 cm ,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.

如图1所示,一张纸条水平放置不动,另一张纸条与它成 45 ° 的角,将该纸条从右往左平移.

(1)写出在平移过程中,重叠部分可能出现的形状.

(2)当重叠部分的形状为如图2所示的四边形 ABCD 时,求证:四边形 ABCD 是菱形.

(3)设平移的距离为 xcm ( 0 < x 6 + 6 2 ) ,两张纸条重叠部分的面积为 sc m 2 .求 s x 的函数关系式,并求 s 的最大值.

来源:2020年湖南省永州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴的交点 A ( - 3 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为 D

(1)求该抛物线的解析式;

(2)连接 AD DC CB ,将 ΔOBC 沿 x 轴以每秒1个单位长度的速度向左平移,得到△ O ' B ' C ' ,点 O B C 的对应点分别为点 O ' B ' C ' ,设平移时间为 t 秒,当点 O ' 与点 A 重合时停止移动.记△ O ' B ' C ' 与四边形 AOCD 重合部分的面积为 S ,请直接写出 S t 之间的函数关系式;

(3)如图2,过该抛物线上任意一点 M ( m , n ) 向直线 l : y = 9 2 作垂线,垂足为 E ,试问在该抛物线的对称轴上是否存在一点 F ,使得 ME - MF = 1 4 ?若存在,请求出 F 的坐标;若不存在,请说明理由.

来源:2020年广东省深圳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 6 x 轴交于点 A ( 2 , 0 ) B ( 6 , 0 ) ,与 y 轴交于点 C ,顶点为 D ,直线 AD y 轴于点 E

(1)求抛物线的解析式.

(2)如图2,将 ΔAOE 沿直线 AD 平移得到 ΔNMP

①当点 M 落在抛物线上时,求点 M 的坐标.

②在 ΔNMP 移动过程中,存在点 M 使 ΔMBD 为直角三角形,请直接写出所有符合条件的点 M 的坐标.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

初中数学平移的性质试题