如图1,抛物线 y = a x 2 + bx + 3 ( a ≠ 0 ) 与 x 轴的交点 A ( - 3 , 0 ) 和 B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为 D .
(1)求该抛物线的解析式;
(2)连接 AD , DC , CB ,将 ΔOBC 沿 x 轴以每秒1个单位长度的速度向左平移,得到△ O ' B ' C ' ,点 O 、 B 、 C 的对应点分别为点 O ' 、 B ' 、 C ' ,设平移时间为 t 秒,当点 O ' 与点 A 重合时停止移动.记△ O ' B ' C ' 与四边形 AOCD 重合部分的面积为 S ,请直接写出 S 与 t 之间的函数关系式;
(3)如图2,过该抛物线上任意一点 M ( m , n ) 向直线 l : y = 9 2 作垂线,垂足为 E ,试问在该抛物线的对称轴上是否存在一点 F ,使得 ME - MF = 1 4 ?若存在,请求出 F 的坐标;若不存在,请说明理由.
某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,下图是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像 (1)A、B两地的距离是千米,甲车出发小时到达C地; (2)求乙车出发2小时后直至到达A地的过程中,与的函数关系式及的取值范围,并在图中补全函数图像; (3)乙车出发多长时间,两车相距150千米?
某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米, ∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米). 参考数据:sin40°≈0.64cos40°≈0.77tan40°≈0.84.
如图,为的直径,为弦,且,垂足为. (1)如果的半径为4,1,求的度数; (2)在(1)的条件下,圆周上到直线距离为3的点有多少个?并说明理由.
红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题: (1)这四个班共种树__________棵树. (2)请你补全两幅统计图. (3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?
如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘). (1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果; (2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.