初中数学

如图,已知等边 ΔABC 的边长为8,点 P AB 边上的一个动点(与点 A B 不重合).直线 l 是经过点 P 的一条直线,把 ΔABC 沿直线 l 折叠,点 B 的对应点是点 B '

(1)如图1,当 PB = 4 时,若点 B ' 恰好在 AC 边上,则 AB ' 的长度为         

(2)如图2,当 PB = 5 时,若直线 l / / AC ,则 BB ' 的长度为       

(3)如图3,点 P AB 边上运动过程中,若直线 l 始终垂直于 AC ΔACB ' 的面积是否变化?若变化,说明理由;若不变化,求出面积;

(4)当 PB = 6 时,在直线 l 变化过程中,求 ΔACB ' 面积的最大值.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

问题情境:如图1,在正方形 ABCD 中, E 为边 BC 上一点(不与点 B C 重合),垂直于 AE 的一条直线 MN 分别交 AB AE CD 于点 M P N .判断线段 DN MB EC 之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足 P 恰好为 AE 的中点,连接 BD ,交 MN 于点 Q ,连接 EQ ,并延长交边 AD 于点 F .求 AEF 的度数;

(2)如图3,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连接 AN ,将 ΔAPN 沿着 AN 翻折,点 P 落在点 P ' 处,若正方形 ABCD 的边长为4, AD 的中点为 S ,求 P ' S 的最小值.

问题拓展:如图4,在边长为4的正方形 ABCD 中,点 M N 分别为边 AB CD 上的点,将正方形 ABCD 沿着 MN 翻折,使得 BC 的对应边 B ' C ' 恰好经过点 A C ' N AD 于点 F .分别过点 A F AG MN FH MN ,垂足分别为 G H .若 AG = 5 2 ,请直接写出 FH 的长.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知,在 Rt Δ ABC 中, ACB = 90 ° AC = 4 BC = 2 D AC 边上的一个动点,将 ΔABD 沿 BD 所在直线折叠,使点 A 落在点 P 处.

(1)如图1,若点 D AC 中点,连接 PC

①写出 BP BD 的长;

②求证:四边形 BCPD 是平行四边形.

(2)如图2,若 BD = AD ,过点 P PH BC BC 的延长线于点 H ,求 PH 的长.

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图所示,在矩形纸片 ABCD 中, AB = 3 BC = 6 ,点 E F 分别是矩形的边 AD BC 上的动点,将该纸片沿直线 EF 折叠.使点 B 落在矩形边 AD 上,对应点记为点 G ,点 A 落在 M 处,连接 EF BG BE EF BG 交于点 N .则下列结论成立的是 (    )

BN = AB

②当点 G 与点 D 重合时, EF = 3 5 2

ΔGNF 的面积 S 的取值范围是 9 4 S 7 2

④当 CF = 5 2 时, S ΔMEG = 3 13 4

A.

①③

B.

③④

C.

②③

D.

②④

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

小华用一张直角三角形纸片玩折纸游戏,如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° AC = 1 .第一步,在 AB 边上找一点 D ,将纸片沿 CD 折叠,点 A 落在 A ' 处,如图2;第二步,将纸片沿 C A ' 折叠,点 D 落在 D ' 处,如图3.当点 D ' 恰好落在原直角三角形纸片的边上时,线段 A ' D ' 的长为   

来源:2021年河南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图是一张矩形纸片 ABCD ,点 M 是对角线 AC 的中点,点 E BC 边上,把 ΔDCE 沿直线 DE 折叠,使点 C 落在对角线 AC 上的点 F 处,连接 DF EF .若 MF = AB ,则 DAF =   度.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 BC = 7 B = 60 ° ,点 D 在边 BC 上, CD = 3 ,联结 AD .如果将 ΔACD 沿直线 AD 翻折后,点 C 的对应点为点 E ,那么点 E 到直线 BD 的距离为  

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图①,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F

(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);

(2)若 DF BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;

(3)若 DF AB ,直接写出 BDE 的度数.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

实践与探究

操作一:如图①,已知正方形纸片 ABCD ,将正方形纸片沿过点 A 的直线折叠,使点 B 落在正方形 ABCD 的内部,点 B 的对应点为点 M ,折痕为 AE ,再将纸片沿过点 A 的直线折叠,使 AD AM 重合,折痕为 AF ,则 EAF =   度.

操作二:如图②,将正方形纸片沿 EF 继续折叠,点 C 的对应点为点 N .我们发现,当点 E 的位置不同时,点 N 的位置也不同.当点 E BC 边的某一位置时,点 N 恰好落在折痕 AE 上,则 AEF =   度.

在图②中,运用以上操作所得结论,解答下列问题:

(1)设 AM NF 的交点为点 P .求证: ΔANP ΔFNE

(2)若 AB = 3 ,则线段 AP 的长为   

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在矩形OABC纸片中,OA=7,OC=5,DBC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线ly=﹣x+7上时,记为点EF,当点C的对应点落在边OA上时,记为点G

(1)求点EF的坐标;

(2)求经过EFG三点的抛物线的解析式;

(3)当点C的对应点落在直线l上时,求CD的长;

(4)在(2)中的抛物线上是否存在点P,使以EFP为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

来源:2016年湖北省恩施州中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有: x 1 y 3 y x + 2 y =﹣ x + 4

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,AC分别在x轴和y轴上,抛物线 y = 1 4 ( x - m ) 2 + n 经过BC两点,顶点D在正方形内部.

(1)直接写出点Dmn)所有的特征线;

(2)若点D有一条特征线是yx+1,求此抛物线的解析式;

(3)点PAB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,将等腰直角三角形纸片 ABC 对折,折痕为 CD .展平后,再将点 B 折叠在边 AC 上(不与 A C 重合),折痕为 EF ,点 B AC 上的对应点为 M ,设 CD EM 交于点 P ,连接 PF .已知 BC = 4

(1)若 M AC 的中点,求 CF 的长;

(2)随着点 M 在边 AC 上取不同的位置,

ΔPFM 的形状是否发生变化?请说明理由;

②求 ΔPFM 的周长的取值范围.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD AB = 4 BC = 8 ,点 M N 分别在矩形的边 AD BC 上,将矩形纸片沿直线 MN 折叠,使点 C 落在矩形的边 AD 上,记为点 P ,点 D 落在 G 处,连接 PC ,交 MN 于点 Q ,连接 CM .下列结论:①四边形 CMPN 是菱形;②点 P 与点 A 重合时, MN = 5 ;③ ΔPQM 的面积 S 的取值范围是 4 S 5 .其中所有正确结论的序号是 (    )

A.

①②③

B.

①②

C.

①③

D.

②③

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,先将矩形纸片 ABCD 沿 EF 折叠 ( AB 边与 DE CF 的异侧), AE CF 于点 G ;再将纸片折叠,使 CG AE 在同一条直线上,折痕为 GH .若 AEF = α ,纸片宽 AB = 2 cm ,则 HE =    cm

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)试题