如图①,在 Rt Δ ABC 中, ∠ ACB = 90 ° , ∠ A = 60 ° , CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F .
(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);
(2)若 DF ⊥ BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;
(3)若 DF ⊥ AB ,直接写出 ∠ BDE 的度数.
先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2),其中x=,y=3.
某位同学做一道题:已知两个多项式A、B,求A﹣B的值.他误将A﹣B看成A+B,求得结果为3x2﹣3x+5,已知B=x2﹣x﹣1.(1)求多项式A;(2)求A﹣B的正确答案.
在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B,C的坐标:B( , ),C( , );(2)求经过A,B,C三点的抛物线解析式;(3)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A,B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(2)中的抛物线交于第一象限的点M.当AE=2时,抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.(假设年租金的增加额均为5000元的整数倍)该公司要为租出的商铺每间每年交各种费用2万元,未租出的商铺每间每年交各种费用1万元.(1)当每间商铺的年租金定为12万元时,能租出多少间?年收益多少万元?(2)当每间商铺的年租金定为多少万元时,该公司的年收益最大,最大值为多少?
小刚按照某种规律写出4个方程:①;②;③;④……(1)按照此规律,请你写出第100个方程: ;(2)按此规律写出第n个方程是 ;这个方程是否有实数解?若有,请求出它的解,若没有,请说明理由.