初中数学

如图,已知等边 ΔABC 的边长为8,点 P AB 边上的一个动点(与点 A B 不重合).直线 l 是经过点 P 的一条直线,把 ΔABC 沿直线 l 折叠,点 B 的对应点是点 B '

(1)如图1,当 PB = 4 时,若点 B ' 恰好在 AC 边上,则 AB ' 的长度为         

(2)如图2,当 PB = 5 时,若直线 l / / AC ,则 BB ' 的长度为       

(3)如图3,点 P AB 边上运动过程中,若直线 l 始终垂直于 AC ΔACB ' 的面积是否变化?若变化,说明理由;若不变化,求出面积;

(4)当 PB = 6 时,在直线 l 变化过程中,求 ΔACB ' 面积的最大值.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①是一张矩形纸片,按以下步骤进行操作:

(Ⅰ)将矩形纸片沿 DF 折叠,使点 A 落在 CD 边上点 E 处,如图②;

(Ⅱ)在第一次折叠的基础上,过点 C 再次折叠,使得点 B 落在边 CD 上点 B ' 处,如图③,两次折痕交于点 O

(Ⅲ)展开纸片,分别连接 OB OE OC FD ,如图④.

(探究)

(1)证明: ΔOBC ΔOED

(2)若 AB = 8 ,设 BC x O B 2 y ,求 y 关于 x 的关系式.

来源:2019年江苏省盐城市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,把平行四边形纸片 ABCD 沿 BD 折叠,点 C 落在点 C ' 处, BC ' AD 相交于点 E

(1)连接 AC ' ,则 AC ' BD 的位置关系是            

(2) EB ED 相等吗?证明你的结论.

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

在矩形 ABCD CD 边上取一点 E ,将 ΔBCE 沿 BE 翻折,使点 C 恰好落在 AD 边上点 F 处.

(1)如图1,若 BC = 2 BA ,求 CBE 的度数;

(2)如图2,当 AB = 5 ,且 AF · FD = 10 时,求 BC 的长;

(3)如图3,延长 EF ,与 ABF 的角平分线交于点 M BM AD 于点 N ,当 NF = AN + FD 时,求 AB BC 的值.

来源:2020年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,可通过构造直角三角形利用图1得到结论: P 1 P 2 = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 他还利用图2证明了线段 P 1 P 2 的中点 P ( x , y ) P 的坐标公式: x = x 1 + x 2 2 y = y 1 + y 2 2

(1)请你帮小明写出中点坐标公式的证明过程;

运用:(2)①已知点 M ( 2 , 1 ) N ( 3 , 5 ) ,则线段 MN 长度为  

②直接写出以点 A ( 2 , 2 ) B ( 2 , 0 ) C ( 3 , 1 ) D 为顶点的平行四边形顶点 D 的坐标:  

拓展:(3)如图3,点 P ( 2 , n ) 在函数 y = 4 3 x ( x 0 ) 的图象 OL x 轴正半轴夹角的平分线上,请在 OL x 轴上分别找出点 E F ,使 ΔPEF 的周长最小,简要叙述作图方法,并求出周长的最小值.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 D E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.

(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)

(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

综合与实践

折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.

在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.

实践操作

如图1,将矩形纸片 ABCD 沿对角线 AC 翻折,使点 B ' 落在矩形 ABCD 所在平面内, B ' C AD 相交于点 E ,连接 B ' D

解决问题

(1)在图1中,

B ' D AC 的位置关系为  

②将 ΔAEC 剪下后展开,得到的图形是  

(2)若图1中的矩形变为平行四边形时 ( AB BC ) ,如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;

(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为  

拓展应用

(4)在图2中,若 B = 30 ° AB = 4 3 ,当△ AB ' D 恰好为直角三角形时, BC 的长度为  

来源:2018年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

再读教材:

宽与长的比是 5 1 2 (约为 0 . 618 ) 的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示: MN = 2 )

第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB ,并把 AB 折到图③中所示的 AD 处.

第四步,展平纸片,按照所得的点 D 折出 DE ,使 DE ND ,则图④中就会出现黄金矩形.

问题解决:

(1)图③中 AB =   (保留根号);

(2)如图③,判断四边形 BADQ 的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

实际操作

(4)结合图④,请在矩形 BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为一个矩形纸片, AB = 3 BC = 2 ,动点 P D 点出发沿 DC 方向运动至 C 点后停止, ΔADP 以直线 AP 为轴翻折,点 D 落在点 D 1 的位置.设 DP = x ,△ A D 1 P 与原纸片重叠部分的面积为 y

(1)当 x 为何值时,直线 A D 1 过点 C

(2)当 x 为何值时,直线 A D 1 BC 的中点 E

(3)求出 y x 的函数表达式.

来源:2017年山东省威海市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

实验探究:

(1)如图1,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开;再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN MN .请你观察图1,猜想 MBN 的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片 BMN 剪下,如图2.折叠该纸片,探究 MN BM 的数量关系.写出折叠方案,并结合方案证明你的结论.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,在矩形纸片 ABCD 中, AB = 3 cm AD = 5 cm ,折叠纸片使 B 点落在边 AD 上的 E 处,折痕为 PQ ,过点 E EF / / AB PQ F ,连接 BF

(1)求证:四边形 BFEP 为菱形;

(2)当点 E AD 边上移动时,折痕的端点 P Q 也随之移动;

①当点 Q 与点 C 重合时(如图 2 ) ,求菱形 BFEP 的边长;

②若限定 P Q 分别在边 BA BC 上移动,求出点 E 在边 AD 上移动的最大距离.

来源:2017年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

ΔABC 中, M AC 边上的一点,连接 BM .将 ΔABC 沿 AC 翻折,使点 B 落在点 D 处,当 DM / / AB 时,求证:四边形 ABMD 是菱形.

来源:2017年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图, AO 为入射光线,入射点为 O ON 为法线(过入射点 O 且垂直于镜面的直线), OB 为反射光线,此时反射角 BON 等于入射角 AON

问题思考:

(1)如图1,一束光线从点 A 处入射到平面镜上,反射后恰好过点 B ,请在图中确定平面镜上的入射点 P ,保留作图痕迹,并简要说明理由;

(2)如图2,两平面镜 OM ON 相交于点 O ,且 OM ON ,一束光线从点 A 出发,经过平面镜反射后,恰好经过点 B .小昕说,光线可以只经过平面镜 OM 反射后过点 B ,也可以只经过平面镜 ON 反射后过点 B .除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;

问题拓展:

(3)如图3,两平面镜 OM ON 相交于点 O ,且 MON = 30 ° ,一束光线从点 S 出发,且平行于平面镜 OM ,第一次在点 A 处反射,经过若干次反射后又回到了点 S ,如果 SA AO 的长均为 1 m ,求这束光线经过的路程;

(4)如图4,两平面镜 OM ON 相交于点 O ,且 MON = 15 ° ,一束光线从点 P 出发,经过若干次反射后,最后反射出去时,光线平行于平面镜 OM .设光线出发时与射线 PM 的夹角为 θ ( 0 ° < θ < 180 ° ) ,请直接写出满足条件的所有 θ 的度数(注 : OM ON 足够长)

来源:2016年江苏省连云港市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,矩形 AOCB 的顶点 A C 分别位于 x 轴和 y 轴的正半轴上,线段 OA OC 的长度满足方程 | x 15 | + y 13 = 0 ( OA > OC ) ,直线 y = kx + b 分别与 x 轴、 y 轴交于 M N 两点,将 ΔBCN 沿直线 BN 折叠,点 C 恰好落在直线 MN 上的点 D 处,且 tan CBD = 3 4

(1)求点 B 的坐标;

(2)求直线 BN 的解析式;

(3)将直线 BN 以每秒1个单位长度的速度沿 y 轴向下平移,求直线 BN 扫过矩形 AOCB 的面积 S 关于运动的时间 t ( 0 < t 13 ) 的函数关系式.

来源:2017年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

已知,在 Rt Δ ABC 中, ACB = 90 ° AC = 4 BC = 2 D AC 边上的一个动点,将 ΔABD 沿 BD 所在直线折叠,使点 A 落在点 P 处.

(1)如图1,若点 D AC 中点,连接 PC

①写出 BP BD 的长;

②求证:四边形 BCPD 是平行四边形.

(2)如图2,若 BD = AD ,过点 P PH BC BC 的延长线于点 H ,求 PH 的长.

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)解答题