初中数学

如图,已知等边 ΔABC 的边长为8,点 P AB 边上的一个动点(与点 A B 不重合).直线 l 是经过点 P 的一条直线,把 ΔABC 沿直线 l 折叠,点 B 的对应点是点 B '

(1)如图1,当 PB = 4 时,若点 B ' 恰好在 AC 边上,则 AB ' 的长度为         

(2)如图2,当 PB = 5 时,若直线 l / / AC ,则 BB ' 的长度为       

(3)如图3,点 P AB 边上运动过程中,若直线 l 始终垂直于 AC ΔACB ' 的面积是否变化?若变化,说明理由;若不变化,求出面积;

(4)当 PB = 6 时,在直线 l 变化过程中,求 ΔACB ' 面积的最大值.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F

(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);

(2)若 DF BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;

(3)若 DF AB ,直接写出 BDE 的度数.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 8 ,点 E F 分别在边 AD BC 上,且 AE = 3 ,按以下步骤操作:

第一步,沿直线 EF 翻折,点 A 的对应点 A ' 恰好落在对角线 AC 上,点 B 的对应点为 B ' ,则线段 BF 的长为   

第二步,分别在 EF A ' B ' 上取点 M N ,沿直线 MN 继续翻折,使点 F 与点 E 重合,则线段 MN 的长为   

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

折纸的思考.

(操作体验)

用一张矩形纸片折等边三角形.

第一步,对折矩形纸片 ABCD ( AB > BC ) (图①),使 AB DC 重合,得到折痕 EF ,把纸片展平(图②).

第二步,如图③,再一次折叠纸片,使点 C 落在 EF 上的 P 处,并使折痕经过点 B ,得到折痕 BG ,折出 PB PC ,得到 ΔPBC

(1)说明 ΔPBC 是等边三角形.

(数学思考)

(2)如图④,小明画出了图③的矩形 ABCD 和等边三角形 PBC .他发现,在矩形 ABCD 中把 ΔPBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.

(3)已知矩形一边长为 3 cm ,另一边长为 acm ,对于每一个确定的 a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 a 的取值范围.

(问题解决)

(4)用一张正方形铁片剪一个直角边长分别为 4 cm 1 cm 的直角三角形铁片,所需正方形铁片的边长的最小值为        cm

来源:2017年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD AB = 4 BC = 8 ,点 M N 分别在矩形的边 AD BC 上,将矩形纸片沿直线 MN 折叠,使点 C 落在矩形的边 AD 上,记为点 P ,点 D 落在 G 处,连接 PC ,交 MN 于点 Q ,连接 CM .下列结论:①四边形 CMPN 是菱形;②点 P 与点 A 重合时, MN = 5 ;③ ΔPQM 的面积 S 的取值范围是 4 S 5 .其中所有正确结论的序号是 (    )

A.

①②③

B.

①②

C.

①③

D.

②③

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,矩形 AOCB 的顶点 A C 分别位于 x 轴和 y 轴的正半轴上,线段 OA OC 的长度满足方程 | x 15 | + y 13 = 0 ( OA > OC ) ,直线 y = kx + b 分别与 x 轴、 y 轴交于 M N 两点,将 ΔBCN 沿直线 BN 折叠,点 C 恰好落在直线 MN 上的点 D 处,且 tan CBD = 3 4

(1)求点 B 的坐标;

(2)求直线 BN 的解析式;

(3)将直线 BN 以每秒1个单位长度的速度沿 y 轴向下平移,求直线 BN 扫过矩形 AOCB 的面积 S 关于运动的时间 t ( 0 < t 13 ) 的函数关系式.

来源:2017年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

如图,正方形纸片 ABCD 的边长为12,点 F AD 上一点,将 ΔCDF 沿 CF 折叠,点 D 落在点 G 处,连接 DG 并延长交 AB 于点 E .若 AE = 5 ,则 GE 的长为   

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有: x 1 y 3 y x + 2 y =﹣ x + 4

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,AC分别在x轴和y轴上,抛物线 y = 1 4 ( x - m ) 2 + n 经过BC两点,顶点D在正方形内部.

(1)直接写出点Dmn)所有的特征线;

(2)若点D有一条特征线是yx+1,求此抛物线的解析式;

(3)点PAB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图所示,在矩形纸片 ABCD 中, AB = 3 BC = 6 ,点 E F 分别是矩形的边 AD BC 上的动点,将该纸片沿直线 EF 折叠.使点 B 落在矩形边 AD 上,对应点记为点 G ,点 A 落在 M 处,连接 EF BG BE EF BG 交于点 N .则下列结论成立的是 (    )

BN = AB

②当点 G 与点 D 重合时, EF = 3 5 2

ΔGNF 的面积 S 的取值范围是 9 4 S 7 2

④当 CF = 5 2 时, S ΔMEG = 3 13 4

A.

①③

B.

③④

C.

②③

D.

②④

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图是一张矩形纸片 ABCD ,点 M 是对角线 AC 的中点,点 E BC 边上,把 ΔDCE 沿直线 DE 折叠,使点 C 落在对角线 AC 上的点 F 处,连接 DF EF .若 MF = AB ,则 DAF =   度.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:数学活动课上,老师出示了一个问题:如图①,在 ABCD 中, BE AD ,垂足为 E F CD 的中点,连接 EF BF ,试猜想 EF BF 的数量关系,并加以证明.

独立思考:(1)请解答老师提出的问题;

实践探究:(2)希望小组受此问题的启发,将 ABCD 沿着 BF ( F CD 的中点)所在直线折叠,如图②,点 C 的对应点为 C ' ,连接 DC ' 并延长交 AB 于点 G ,请判断 AG BG 的数量关系,并加以证明.

问题解决:(3)智慧小组突发奇想,将 ABCD 沿过点 B 的直线折叠,如图③,点 A 的对应点为 A ' ,使 A ' B CD 于点 H ,折痕交 AD 于点 M ,连接 A ' M ,交 CD 于点 N .该小组提出一个问题:若此 ABCD 的面积为20,边长 AB = 5 BC = 2 5 ,求图中阴影部分(四边形 BHNM ) 的面积.请你思考此问题,直接写出结果.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 60 ° 30 ° 15 ° 等大小的角,可以采用如下方法:

操作感知:

第一步:对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开(如图1 )

第二步:再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN (如图 2 )

猜想论证:

(1)若延长 MN BC 于点 P ,如图3所示,试判定 ΔBMP 的形状,并证明你的结论.

拓展探究:

(2)在图3中,若 AB = a BC = b ,当 a b 满足什么关系时,才能在矩形纸片 ABCD 中剪出符合(1)中结论的三角形纸片 BMP

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

小华用一张直角三角形纸片玩折纸游戏,如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° AC = 1 .第一步,在 AB 边上找一点 D ,将纸片沿 CD 折叠,点 A 落在 A ' 处,如图2;第二步,将纸片沿 C A ' 折叠,点 D 落在 D ' 处,如图3.当点 D ' 恰好落在原直角三角形纸片的边上时,线段 A ' D ' 的长为   

来源:2021年河南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=10,AD=6,点MAB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点PQ

(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)

(2)如果PQABCD都相交,试判断△MPQ的形状并证明你的结论;

(3)设AMxd为点M到直线PQ的距离,yd2

①求y关于x的函数解析式,并指出x的取值范围;

②当直线PQ恰好通过点D时,求点M到直线PQ的距离.

来源:2016年广西来宾市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)试题