如图,在矩形 中, , , 、 分别是边 、 上一点, ,将 沿 翻折得△ ,连接 ,当 时, 是以 为腰的等腰三角形.
实践与探究
操作一:如图①,已知正方形纸片 ,将正方形纸片沿过点 的直线折叠,使点 落在正方形 的内部,点 的对应点为点 ,折痕为 ,再将纸片沿过点 的直线折叠,使 与 重合,折痕为 ,则 度.
操作二:如图②,将正方形纸片沿 继续折叠,点 的对应点为点 .我们发现,当点 的位置不同时,点 的位置也不同.当点 在 边的某一位置时,点 恰好落在折痕 上,则 度.
在图②中,运用以上操作所得结论,解答下列问题:
(1)设 与 的交点为点 .求证: ;
(2)若 ,则线段 的长为 .
在矩形 中, ,点 、 分别是边 、 上的动点,且 ,连接 ,将矩形 沿 折叠,点 落在点 处,点 落在点 处.
(1)如图1,当 与线段 交于点 时,求证: ;
(2)如图2,当点 在线段 的延长线上时, 交 于点 ,求证:点 在线段 的垂直平分线上;
(3)当 时,在点 由点 移动到 中点的过程中,计算出点 运动的路线长.
如图,将正方形纸片 沿 折叠,使点 的对称点 落在边 上,点 的对称点为点 , 交 于点 ,连接 交 于点 ,连接 .下列四个结论中:① ;② ;③ 平分 ;④ ,正确的是 (填序号即可).
在 中, , , 是边 上一点,将 沿 折叠得到 ,连接 .
(1)特例发现
如图1,当 , 落在直线 上时.
①求证: ;
②填空: 的值为 ;
(2)类比探究
如图2,当 , 与边 相交时,在 上取一点 ,使 , 交 于点 .探究 的值(用含 的式子表示),并写出探究过程;
(3)拓展运用
在(2)的条件下,当 , 是 的中点时,若 ,求 的长.
如图,先将矩形纸片 沿 折叠 边与 在 的异侧), 交 于点 ;再将纸片折叠,使 与 在同一条直线上,折痕为 .若 ,纸片宽 ,则 .
如图①,在 中, , , 是斜边 上的中线,点 为射线 上一点,将 沿 折叠,点 的对应点为点 .
(1)若 .直接写出 的长(用含 的代数式表示);
(2)若 ,垂足为 ,点 与点 在直线 的异侧,连接 ,如②,判断四边形 的形状,并说明理由;
(3)若 ,直接写出 的度数.
如图,在矩形 中, , ,点 , 分别在边 , 上,且 ,按以下步骤操作:
第一步,沿直线 翻折,点 的对应点 恰好落在对角线 上,点 的对应点为 ,则线段 的长为 ;
第二步,分别在 , 上取点 , ,沿直线 继续翻折,使点 与点 重合,则线段 的长为 .
如图,矩形纸片 , , ,点 、 分别在矩形的边 、 上,将矩形纸片沿直线 折叠,使点 落在矩形的边 上,记为点 ,点 落在 处,连接 ,交 于点 ,连接 .下列结论:①四边形 是菱形;②点 与点 重合时, ;③ 的面积 的取值范围是 .其中所有正确结论的序号是
A. |
①②③ |
B. |
①② |
C. |
①③ |
D. |
②③ |
如图,正方形纸片 的边长为12,点 是 上一点,将 沿 折叠,点 落在点 处,连接 并延长交 于点 .若 ,则 的长为 .
如图是一张矩形纸片 ,点 是对角线 的中点,点 在 边上,把 沿直线 折叠,使点 落在对角线 上的点 处,连接 , .若 ,则 度.
如图所示,在矩形纸片 中, , ,点 、 分别是矩形的边 、 上的动点,将该纸片沿直线 折叠.使点 落在矩形边 上,对应点记为点 ,点 落在 处,连接 、 、 , 与 交于点 .则下列结论成立的是
① ;
②当点 与点 重合时, ;
③ 的面积 的取值范围是 ;
④当 时, .
A. |
①③ |
B. |
③④ |
C. |
②③ |
D. |
②④ |
综合与实践
问题情境:数学活动课上,老师出示了一个问题:如图①,在 中, ,垂足为 , 为 的中点,连接 , ,试猜想 与 的数量关系,并加以证明.
独立思考:(1)请解答老师提出的问题;
实践探究:(2)希望小组受此问题的启发,将 沿着 为 的中点)所在直线折叠,如图②,点 的对应点为 ,连接 并延长交 于点 ,请判断 与 的数量关系,并加以证明.
问题解决:(3)智慧小组突发奇想,将 沿过点 的直线折叠,如图③,点 的对应点为 ,使 于点 ,折痕交 于点 ,连接 ,交 于点 .该小组提出一个问题:若此 的面积为20,边长 , ,求图中阴影部分(四边形 的面积.请你思考此问题,直接写出结果.
在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 , , 等大小的角,可以采用如下方法:
操作感知:
第一步:对折矩形纸片 ,使 与 重合,得到折痕 ,把纸片展开(如图1 .
第二步:再一次折叠纸片,使点 落在 上,并使折痕经过点 ,得到折痕 ,同时得到线段 (如图 .
猜想论证:
(1)若延长 交 于点 ,如图3所示,试判定 的形状,并证明你的结论.
拓展探究:
(2)在图3中,若 , ,当 , 满足什么关系时,才能在矩形纸片 中剪出符合(1)中结论的三角形纸片 ?