如图,OA,OD是⊙O半径,过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B
(1)求证:直线CD是⊙O的切线;
(2)如果D点是BC的中点,⊙O的半径为3cm,求 的长度(结果保留π)
如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求EF的长.
如图1,在△ ABC中, AB= AC,⊙ O是△ ABC的外接圆,过点 C作∠ BCD=∠ ACB交⊙ O于点 D,连接 AD交 BC于点 E,延长 DC至点 F,使 CF= AC,连接 AF.
(1)求证: ED= EC;
(2)求证: AF是⊙ O的切线;
(3)如图2,若点 G是△ ACD的内心, BC• BE=25,求 BG的长.
已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD.
(1)求证:直线 OD是⊙ E的切线;
(2)点 F为 x轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG;
①当tan∠ ACF= 时,求所有 F点的坐标 (直接写出);
②求 的最大值.
如图,△ ABC内接于⊙ O, AB是⊙ O的直径, AC= CE,连接 AE交 BC于点 D,延长 DC至 F点,使 CF= CD,连接 AF.
(1)判断直线 AF与⊙ O的位置关系,并说明理由.
(2)若 AC=10,tan∠ CAE= ,求 AE的长.
如图, AB是⊙ O的直径,弦 CD⊥ AB,垂足为 H,连接 AC.过 上一点 E作 EG∥ AC交 CD的延长线于点 G,连接 AE交 CD于点 F,且 EG= FG.
(1)求证: EG是⊙ O的切线;
(2)延长 AB交 GE的延长线于点 M,若 AH=2, CH=2 ,求 OM的长.
如图, AB为⊙ O的直径, C、 D是半圆 AB的三等分点,过点 C作 AD延长线的垂线 CE,垂足为 E.
(1)求证: CE是⊙ O的切线;
(2)若⊙ O的半径为2,求图中阴影部分的面积.
如图,⊙ O是△ ABC的外接圆,点 O在 BC边上,∠ BAC的平分线交⊙ O于点 D,连接 BD、 CD,过点 D作 BC的平行线与 AC的延长线相交于点 P.
(1)求证: PD是⊙ O的切线;
(2)求证:△ ABD∽△ DCP;
(3)当 AB=5 cm, AC=12 cm时,求线段 PC的长.
如图,⊙ O是△ ABC的外接圆, AC是直径,弦 BD= BA, EB⊥ DC,交 DC的延长线于点 E.
(1)求证: BE是⊙ O的切线;
(2)当sin∠ BCE= , AB=3时,求 AD的长.
如图, AB为⊙ O的直径, C, G是⊙ O上两点,过点 C的直线 CD⊥ BG于点 D,交 BA的延长线于点 E,连接 BC,交 OD于点 F,且 BC平分∠ ABD.
(1)求证: CD是⊙ O的切线;
(2)若 ,求∠ E的度数;
(3)连结 AD,在(2)的条件下,若 CD=2 ,求 AD的长.
如图, AB是⊙ O的直径, CD切⊙ O于点 D,且 BD∥ OC,连接 AC.
(1)求证: AC是⊙ O的切线;
(2)若 AB= OC=4,求图中阴影部分的面积(结果保留根号和π)
如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.
(1)求证:MN是⊙O的切线;
(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.
如图,AB为⊙O的直径,点E在⊙O上,C为 的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2, ,求AB的长.
如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.
(1)求证:AC是⊙O的切线;
(2)若OB=10,CD=8,求BE的长.