如图, AB为⊙ O的直径, D为 的中点,连接 OD交弦 AC于点 F,过点 D作 DE∥ AC,交 BA的延长线于点 E.
(1)求证: DE是⊙ O的切线;
(2)连接 CD,若 OA= AE=4,求四边形 ACDE的面积.
如图, 是 的直径, 为 上一点 不与点 , 重合)连接 , ,过点 作 ,垂足为点 .将 沿 翻折,点 落在点 处得 , 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分面积.
如图,在△ ABC中,∠ C=90°, D、 F是 AB边上两点,以 DF为直径的⊙ O与 BC相交于点 E,连接 EF,∠ OFE= ∠ A.过点 F作 FG⊥ BC于点 G,交⊙ O于点 H,连接 EH.
(1)求证: BC是⊙ O的切线;
(2)连接 ED,过点 E作 EQ⊥ AB,垂足为 Q,△ EQD和△ EGH全等吗?若全等,请予以证明;若不全等,请说明理由;
(3)当 BO=5, BE=4时,求△ EHG的面积.
如图, 为 的直径,点 在 上, 于点 ,且 平分 ,求证:
(1)直线 是 的切线;
(2) .
如图,已知⊙ O的直径为 AB, AC⊥ AB于点 A, BC与⊙ O相交于点 D,在 AC上取一点 E,使得 ED= EA.
(1)求证: ED是⊙ O的切线;
(2)当 OE=10时,求 BC的长.
如图,在直角三角形 中, ,点 是 的内心,
的延长线和三角形 的外接圆 相交于点 ,连接 .
(1)求证: ;
(2)过点 作 的平行线交 、 的延长线分别于点 、 ,已知 ,圆 的直径为5.
①求证: 为圆 的切线;
②求 的长.
如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.
(1)求证:AB是⊙O的直径;
(2)判断DE与⊙O的位置关系,并加以证明;
(3)若⊙O的半径为3,∠BAC=60°,求DE的长.
如图,已知 , , 为 的中点,以 为直径的 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在 中, ,以 为直径的 交 于点 , 交 的延长线于点 ,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在 中, , 是 的平分线,以 为直径的 交 边于点 ,连接 ,过点 作 ,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求线段 的长.
如图,点 在以 为直径的 上,点 是 的中点,连接 并延长交 于点 ,作 , 交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
如图,已知 是 外一点.用两种不同的方法过点 作 的一条切线.
要求:(1)用直尺和圆规作图;
(2)保留作图的痕迹,写出必要的文字说明.
如图, 为 的直径, 为 上一点, 的平分线交 于点 , 于点 .
(1)试判断 与 的位置关系,并说明理由;
(2)过点 作 于点 ,若 , ,求图中阴影部分的面积.
如图,在 中,直径 经过弦 的中点 ,点 在 上, 的延长线交 于点 ,交过 的直线于 , ,连接 与 交于点 .
(1)求证: 是 的切线;
(2)若点 是 的中点, 的半径为3, ,求 的长.