如图,点 A是直线 AM与⊙ O的交点,点 B在⊙ O上, BD⊥ AM垂足为 D, BD与⊙ O交于点 C, OC平分∠ AOB,∠ B=60°.
(1)求证: AM是⊙ O的切线;
(2)若 DC=2,求图中阴影部分的面积(结果保留π和根号).
正方形ABCD中,E为AD上的一点(不与A、D点重合),AD=nAE,BE的垂直平分线分别交AB、CD于F、G两点,垂足为H. (1)如图1,当n=2时,则= _________ ; (2)如图1,当n=2时,求的值; (3)延长FG交BC的延长线于M(如图2),直接填空:当n= _________ 时,.
如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8m,窗高CD=1.2m,并测得OE=0.8m,OF=3m,求围墙AB的高度.
如图:公路旁有两个高度相等的路灯AB、CD.数学老师杨柳上午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处. (1)在图中画出杨老师的位置(用线段FG表示),并画出光线,标明(太阳光、灯光); (2)若上午上学时候高1米的木棒的影子为2米,杨老师身高为1.5米,他离里程碑E恰5米,求路灯高.
某数学兴趣小组开展了一次活动,过程如下: 设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上. 活动一: 如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒. 数学思考: (1)小棒能无限摆下去吗?答: _________ .(填“能”或“不能”) (2)设AA1=A1A2=A2A3=1. ①θ= _________ 度; ②若记小棒A2n﹣1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…)求出此时a2,a3的值,并直接写出an(用含n的式子表示). 活动二: 如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1. 数学思考: (3)若已经摆放了3根小棒,θ1= _________ ,θ2= _________ ,θ3= _________ ;(用含θ的式子表示) (4)若只能摆放4根小棒,求θ的范围.
如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s. (1)求直线AC的解析式; (2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标; (3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.