已知与是反比例函数图象上的两个点。(1)求的值;(2)求直线AB的函数解析式;(3)若点,点是反比例函数图象上的一点,如果以四点为顶点的四边形为梯形,请你求出点的坐标(能求出一个点即可)。
如图,水面上有一浮标,在高于水面1米的地方观察,测得浮标顶的仰角30°,同时测得浮标在水中的倒影顶端俯角45°,观察时水面处于平静状态,求水面到浮标顶端的高度.(精确到0.1米)
如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14米到达D,在D处测得A的仰角为45°,求铁塔AB的高.
如图,在一次实践活动中,小兵从A地出发,沿北偏东45°方向行进了5千米到达B地,然后再沿北偏西45°方向行进了5千米到达目的地点C. (1)求A、C两地之间的距离; (2)试确定目的地C在点A的什么方向?
如图,线段BE上有一点C,以BC、CE为边分别在BE的同侧作等边三角形ABC、DCE,连结AE、BD,分别交CD、CA于Q、P. (1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由. (2)取AE的中点M、BD的中点N,连结MN,试判断△CMN的形状.
如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点. (1)写出O点到△ABC三个顶点A、B、C的距离关系(不要求证明); (2)如果M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,并证明你的结论.