初中数学

如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C. 则A′C长度的最小值是       .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(9分)如图所示,在边长为1的正方形ABCD中,一直角三角尺PQR的直角顶点P在对角线AC上移动,直角边PQ经过点D,另一直角边与射线BC交于点E.
⑴试判断PE与PD的大小关系,并证明你的结论;
⑵连接PB,试证明:△PBE为等腰三角形;
⑶设AP=x,△PBE的面积为y,
①求出y关于x 函数关系式;
②当点P落在AC的何处时,△PBE的面积最大,此时最大值是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在矩形中,点A的坐标是(-2,1),点C的纵坐标是4,则B、C两点的坐标为(  )

A.()、()             B.()、(
C.()、()              D.() 、(

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题6分)如图,四边形是正方形,点上,,垂足为,请你在上确定一点,使,请你写出两种确定点G的方案,并写出其中一种方案的具体作法和证明

方案



 

 

一:                                             

方案



 

 

二:(1)作法:

(2) 证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠B=90°,AC=60,AB=30。点D是AC上的动点,过D作DF⊥BC于F,再过F作FE//AC,交AB于E。设CD=x,DF=y.
(1)求y与x的函数关系式;
(2)当四边形AEFD为菱形时,求x的值;
(3)当△FED是直角三角形时,求x的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=          
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,直线与y轴交于点,以为边作正方形然后延长与直线交于点,得到第一个梯形;再以为边作正方形,同样延长与直线交于点得到第二个梯形;,再以为边作正方形,延长,得到第三个梯形;……则第2个
的面积是          ;第(n是正整数)个梯形的面积是           (用含n的式子
表示).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒。连接BM并延长交AG于N。

(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH;
(3)过点M分别用AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

认真阅读下列问题,并加以解决:
问题1:如图1,△ABC是直角三角形,∠C =90º.现将△ABC补成一个矩形.要求:使△ABC的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中画出来;
            
图1                                 图2 
问题2:如图2,△ABC是锐角三角形,且满足BC>AC>AB,按问题1中的要求把它补成矩形.请问符合要求的矩形最多可以画出      个,并猜想它们面积之间的数量关系是           (填写“相等”或“不相等”);
问题3:如果△ABC是钝角三角形,且三边仍然满足BC>AC>AB,现将它补成矩形.要求:△ABC有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么这几个矩形面积之间的数量关系是           (填写“相等”或“不相等”).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,菱形ABCD中,AB=4,∠ABC=60°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为           .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k>0)的图象与AC边交于点E.
(1)求证:△AOE与△BOF的面积相等.
(2)记S=S△OEF-S△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存
在,请直接写出点F的坐标,若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图(2),正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD + PE的最小值为                 .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,正方形的面积为12,是等边三角形,点在正方形
内,在对角线上有一点,使的和最小,则这个最小值为       .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.
(1)求AD的长;
(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方形的边长为2,以为圆心、为半径作弧于点,设弧与边围成的阴影部分面积为;然后以为对角线作正方形,又以为圆心、为半径作弧于点,设弧与边围成的阴影部分面积为;…,按此规律继续作下去,设弧与边围成的阴影部分面积为.则:(1)=      ;(2)=      

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题