初中数学

如图平行四边形ABCD中AB=AD=6,∠DAB=60度,F为AC上一点,E为AB中点,则EF+BF的最小值为        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD内作一个等边三角形ABE,连接DE、CE,有如下结论:①图中除等边三角形ABE外,还有三个等腰三角形;②△ADE≌△BCE;③此图形既是中心对称图形也是轴对称图形;④△ABE的面积与正方形ABCD的面积比是;⑤△DEC与△ABE的面积比为。则以上结论正确的是          .(只填正确结论的序号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,
(1)如果动点E、F满足BE=CF(如图):
①写出所有以点E或F为顶点的全等三角形(不得添加辅助线);
②证明:AE⊥BF;
(2)如果动点E、F满足BE=OF(如图),问当AE⊥BF时,点E在什么位置,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某校初四年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

观察计算:
(1)如图1,当a=4,b=1时,四边形ABFD的面积为 _________ 
(2)如图2,当a=4,b=2时,四边形ABFD的面积为 _________ 
(3)如图3,当a=4,b=3时,四边形ABFD的面积为 _________ 
探索发现:
(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;
(5)综合应用:农民赵大伯有一块正方形的土地(如图5),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(  )

A.1 B. C.4﹣2 D.3﹣4
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式            ;自变量的取值范围          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方形ABCD中,点M是射线BC上一点,点N是CD的延长线上一点,且BM=DN,直线BD与MN相交于点E.

(1)如图1,当点M在线段BC上时,求证:BD-2DE=BM;
(2)如图2,当点M在BC的延长线上时,BD、DE、BM之间满足的关系式是____
(3)在⑵的条件下,连接BN交AD于F,连接MF交BD于G,若DE=,且AF:FD=1:2,求线段DG的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:

①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形
EFGH是菱形.其中正确的个数是【   】
A.1          B.2          C.3          D.4  

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
⑴求证:ME = MF.
⑵如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
⑶如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
⑷根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

张大爷家有一块梯形形状的稻田(如图),已知:上底AD=400米,下底BC=600米,高h=300米,张大爷准备把这块稻田平均分给两个儿子(面积相等).
(1)分割方法有无数种,请你帮助张大爷设计两种不同的分割方案,在图1、图2中分别画出来,并简单说明理由;
(2)如果用竹篱笆将分给两个儿子的稻田隔开,问:分割线在什么位置时,所用篱笆长度最短?请在图3中画出来,并求出此时篱笆的最短长度.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)
(1)如果△ABC的面积是S,E是BC的中点,连接AE(如图1),则△AEC的面积是           
(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(如图2),若四边形ABCD的面积是S,则四边形AECF的面积是            
(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB、CD的中点,连接AF,CE(如图3),则四边形AECF的面积是            

图1             图2                图3
拓展与应用
(1)若八边形ABCDEFGH的面积是100,K、M、N、O、P、Q分别是AB、BC、CD、EF、FG、GH的中点,连接KH、MG、NF、OD、PC、QB、(如图4),则图中阴影部分的面积是            
(2)四边形ABCD的面积是100,E、F分别是一组对边AB、CD上的点,且AE=AB,
CF=CD,连接AF,CE(如图5),则四边形AECF的面积是            
(3)(如图6)ABCD的面积是2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动,点F从点B出发沿BC以每秒个单位长的速度向点C运动.E、F分别从点A、B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值         ,并写出理由;若变化,说明是怎样变化的.

图4                  图5                     图6

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图2,四边形ABCD中,E是BC的中点,连结DE并延长,交AB的延长线
于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.下列条件中正确的是(   )

A.AD=BC B.CD=BF C.∠F=∠CDE D.∠A=∠C

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(Ⅰ)某服装厂承揽一项生产夏凉小衫1600件的任务,计划用 t 天完成.
(1)写出每天生产夏凉小衫 w (件)与生产时间 t (天)( t > 4 )之间的函数关系式;
(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?
(Ⅱ)如图,已知矩形 A B C D 中, E A D 上的一点, F A B 上的一点, E F E C ,且 E F = E C D E = 4 c m ,矩形 A B C D 的周长为32cm,求 A E 的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:平行四边形ABCD中,过对角线AC中点O的直线EF交AD于F,BC于E。
求证:BE=DF

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题