初中数学

一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

两组邻边分别相等的四边形我们称它为筝形.
如图,在筝形中,相交于点

(1)求证:①

(2)如果,求筝形的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,为平行四边形ABCD的对角线,的中点,于点,与分别交于点

求证:⑴

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,菱形ABCD,对角线AC、BD交于点O,DE//AC,CE//BD,求证:OE=BC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,把长方形ABCD的纸片,沿EF线折叠后,ED与BC的交点为G,点D、C分别落在D/、C/的位置上,若∠1=70°,求∠2、∠EFG的度数.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

矩形的两条边长分别是,求该矩形的面积和对角线的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在矩形中,,点从点沿矩形的边以的速度经运动,点点出发沿矩形的边以的速度经运动,点同时运动,且一点到达终点另一点也停止运动,求几秒后以为顶点的三角形的面积等于6平方厘米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中AC与BD交于点O,形外有一点E,使∠AED=90°,且DE=3,OE=,则AE=        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.

(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.

(1)求证:△DOE≌△BOF;
(2)当∠DOE满足什么条件时,四边形BEDF是菱形,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.

(1)请判断△OEF的形状,并证明你的结论;
(2)若AB=13,AC=10,请求出线段EF的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程 的两个实数根的值分别是□ABCD的两边AB、AD的长.
(1)如果,试求□ABCD的周长;
(2)当为何值时,□ABCD是菱形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BC O 的直径, AC BD 交于点 E P CB 延长线上一点,连接 PA ,且 PAB = ADB

(1)求证: PA O 的切线;

(2)若 AB = 6 tan ADB = 3 4 ,求 PB 长;

(3)在(2)的条件下,若 AD = CD ,求 ΔCDE 的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,,垂足分别为E,F.

(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质计算题